617 research outputs found

    Automated pupillometry and optic nerve sheath diameter ultrasound to define tuberculous meningitis disease severity and prognosis

    Get PDF
    Background: Tuberculous meningitis (TBM) causes high mortality and morbidity, in part due to raised intracranial pressure (ICP). Automated pupillometry (NPi) and optic nerve sheath diameter (ONSD) are both low-cost, easy-to-use and non-invasive techniques that correlate with ICP and neurological status. However, it is uncertain how to apply these techniques in the management of TBM. Methods: We conducted a pilot study enrolling 20 adults with TBM in the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. Our objective was to investigate the relationships between baseline and serial measurements of NPi and ONSD and disease severity and outcome. Serial NPi and ONSD were performed for 30 days, at discharge, and at 3-months, with measurements correlated with clinical progression and outcomes. Results: ONSD and NPi measurements had an inverse relationship. Higher ONSD and lower NPi values were associated with lower Glasgow coma score. Baseline NPi was a strong predictor 3-month outcome (median NPi 4.55, interquartile range 4.35–4.65 for good outcomes versus 2.60, IQR 0.65–3.95 for poor outcomes, p = 0.002). Pupil inequality (NPi ≥0.7) was also strongly associated with poor 3-month outcomes (p = 0.006). Individual participants' serial NPi and ONSD were variable during initial treatment and correlated with clinical condition and outcome. Conclusion: Pupillometry and ONSD may be used to predict clinical deterioration and outcome from TBM. Future, larger studies are need explore the optimal timing of measurements and to define how they might be used to optimise treatments and improve outcomes from TBM

    Impact of adherence to individual quality-of-care indicators on the prognosis of bloodstream infection due to Staphylococcus aureus: a prospective observational multicentre cohort

    Get PDF
    Objectives To analyse the adherence and impact of quality-of-care indicators (QCIs) in the management of Staphylococcus aureus bloodstream infection in a prospective and multicentre cohort. Methods Analysis of the prospective, multicentre international S. Aureus Collaboration cohort of S. Aureus bloodstream infection cases observed between January 2013 and April 2015. Multivariable analysis was performed to evaluate the impact of adherence to QCIs on 90-day mortality. Results A total of 1784 cases were included. Overall, 90-day mortality was 29.9% and mean follow-up period was 118 days. Adherence was 67% (n = 1180/1762) for follow-up blood cultures, 31% (n = 416/1342) for early focus control, 77.6% (n = 546/704) for performance of echocardiography, 75.5% (n = 1348/1784) for adequacy of targeted antimicrobial therapy, 88.6% (n = 851/960) for adequacy of treatment duration in non-complicated bloodstream infections and 61.2% (n = 366/598) in complicated bloodstream infections. Full bundle adherence was 18.4% (n = 328/1784). After controlling for immortal time bias and potential confounders, focus control (adjusted hazard ratio = 0.76; 95% CI, 0.59–0.99; p 0.038) and adequate targeted antimicrobial therapy (adjusted hazard ratio = 0.75; 95% CI, 0.61–0.91; p 0.004) were associated with low 90-day mortality. Discussion Adherence to QCIs in S. Aureus bloodstream infection did not reach expected rates. Apart from the benefits of application as a bundle, focus control and adequate targeted therapy were independently associated with low mortality

    The Personalised Randomized Controlled Trial: Evaluation of a new trial design

    Get PDF
    In some clinical scenarios, for example, severe sepsis caused by extensively drug resistant bacteria, there is uncertainty between many common treatments, but a conventional multiarm randomized trial is not possible because individual participants may not be eligible to receive certain treatments. The Personalised Randomized Controlled Trial design allows each participant to be randomized between a “personalised randomization list” of treatments that are suitable for them. The primary aim is to produce treatment rankings that can guide choice of treatment, rather than focusing on the estimates of relative treatment effects. Here we use simulation to assess several novel analysis approaches for this innovative trial design. One of the approaches is like a network meta-analysis, where participants with the same personalised randomization list are like a trial, and both direct and indirect evidence are used. We evaluate this proposed analysis and compare it with analyses making less use of indirect evidence. We also propose new performance measures including the expected improvement in outcome if the trial's rankings are used to inform future treatment rather than random choice. We conclude that analysis of a personalized randomized controlled trial can be performed by pooling data from different types of participants and is robust to moderate subgroup-by-intervention interactions based on the parameters of our simulation. The proposed approach performs well with respect to estimation bias and coverage. It provides an overall treatment ranking list with reasonable precision, and is likely to improve outcome on average if used to determine intervention policies and guide individual clinical decisions

    Aetiology and potential animal exposure in central nervous system infections in Vietnam

    Get PDF
    An estimated 73% of emerging infections are zoonotic in origin, with animal contact and encroachment on their habitats increasing the risk of spill-over events. In Vietnam, close exposure to a wide range of animals and animal products can lead to acquisition of zoonotic pathogens, a number of which cause central nervous system (CNS) infections. However, studies show the aetiology of CNS infections remains unknown in around half of cases. We used samples and data from hospitalised patients with CNS infections, enrolled into the Vietnam Initiative on Zoonotic Infections multicentre study, to determine the association between aetiology and animal contact including those in whom the cause was unknown. Among 933 patients, a pathogen or an antibody response to it was identified in 291 (31.2%, 95% CI 28.3–34.3%). The most common pathogens were Streptococcus suis (n = 91 (9.8%, 8.0–11.9%)) and Japanese encephalitis virus (JEV) (n  = 72 (7.7%, 6.1–9.7%)). Commonly reported animal contact included keeping, raising or handling (n  = 364 (39.0%, 35.9–42.2%)) and handling, cooking or consuming raw meat, blood or viscera in the 2 weeks prior to symptom onset (n  = 371 (39.8%, 36.6–43.0%)), with the latter most commonly from pigs (n  = 343 (36.9%, 33.8–40.1%). There was no association between an unknown aetiology and exposure to animals in a multivariate logistic regression. Further testing for unknown or undetected pathogens may increase diagnostic yield, however, given the high proportion of zoonotic pathogens and the presence of risk factors, increasing public awareness about zoonoses and preventive measures can be considered

    Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit

    Get PDF
    BACKGROUND  Strategies to prevent Staphylococcus aureus infection in hospitals focus on patient-to-patient transmission. We used whole-genome sequencing to investigate the role of colonized patients as the source of new S. aureus acquisitions, and the reliability of identifying patient-to-patient transmission using the conventional approach of spa typing and overlapping patient stay. METHODS Over 14 months, all unselected patients admitted to an adult intensive care unit (ICU) were serially screened for S. aureus. All available isolates (n = 275) were spa typed and underwent whole-genome sequencing to investigate their relatedness at high resolution. RESULTS Staphylococcus aureus was carried by 185 of 1109 patients sampled within 24 hours of ICU admission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA). Forty-four S. aureus (22 MRSA) acquisitions while on ICU were detected. Isolates were available for genetic analysis from 37 acquisitions. Whole-genome sequencing indicated that 7 of these 37 (18.9%) were transmissions from other colonized patients. Conventional methods (spa typing combined with overlapping patient stay) falsely identified 3 patient-to-patient transmissions (all MRSA) and failed to detect 2 acquisitions and 4 transmissions (2 MRSA). CONCLUSIONS Only a minority of S. aureus acquisitions can be explained by patient-to-patient transmission. Whole-genome sequencing provides the resolution to disprove transmission events indicated by conventional methods and also to reveal otherwise unsuspected transmission events. Whole-genome sequencing should replace conventional methods for detection of nosocomial S. aureus transmission

    Sample descriptors linked to metagenomic sequencing data from human and animal enteric samples from Vietnam.

    Get PDF
    There is still limited information on the diversity of viruses co-circulating in humans and animals. Here, we report data obtained from a large field collection of enteric samples taken from humans, pigs, rodents and other mammal hosts in Vietnam between 2012 and 2016. Each of 2100 stool or rectal swab samples was subjected to virally-enriched agnostic metagenomic sequencing; the short read sequence data are accessible from the European Nucleotide Archive (ENA). We link the sequence data to metadata on host type and demography and geographic location, distinguishing hospital patients, members of a cohort identified as a high risk of zoonotic infections (e.g. abattoir workers, rat traders) and animals. These data are suitable for further studies of virus diversity and virus discovery in humans and animals from Vietnam and to identify viruses found in multiple hosts that are potentially zoonotic

    Epidemiology and Phylogenetic Analysis of Viral Respiratory Infections in Vietnam.

    Get PDF
    Acute respiratory infections (ARIs) impose a major public health burden on fragile healthcare systems of developing Southeast Asian countries such as Vietnam. The epidemiology, genetic diversity and transmission patterns of respiratory viral pathogens that circulate in this region are not well characterized. We used RT-PCR to screen for 14 common respiratory viruses in nasal/throat samples from 4326 ARI patients from 5 sites in Vietnam during 2012-2016. 64% of patients tested positive for viruses; 14% tested positive multiple co-infecting viruses. The most frequently detected viruses were Respiratory syncytial virus (RSV, 23%), Human Rhinovirus (HRV, 13%), Influenza A virus (IAV, 11%) and Human Bocavirus (HBoV, 7%). RSV infections peaked in July to October, were relatively more common in children 5 years in the central region. Coinfection with IAV or RSV was associated with increased disease severity compared with patients only infected with HBoV or HRV. Over a hundred genomes belonging to 13 families and 24 genera were obtained via metagenomic sequencing, including novel viruses and viruses less commonly associated with ARIs. Phylogenetic and phylogeographic analyses further indicated that neighboring countries were the most likely source of many virus lineages causing ARIs in Vietnam and estimated the period that specific lineages have been circulating. Our study illustrates the value of applying the state-of-the-art virus diagnostic methods (multiplex RT-PCR and metagenomic sequencing) and phylodynamic analyses at a national level to generate an integrated picture of viral ARI epidemiology

    The effect of M. tuberculosis lineage on clinical phenotype

    Get PDF
    Six lineages of Mycobacterium tuberculosis sensu stricto (which excludes M. africanum) are described. Single-country or small observational data suggest differences in clinical phenotype between lineages. We present strain lineage and clinical phenotype data from 12,246 patients from 3 low-incidence and 5 high-incidence countries. We used multivariable logistic regression to explore the effect of lineage on site of disease and on cavities on chest radiography, given pulmonary TB; multivariable multinomial logistic regression to investigate types of extra-pulmonary TB, given lineage; and accelerated failure time and Cox proportional-hazards models to explore the effect of lineage on time to smear and culture-conversion. Mediation analyses quantified the direct effects of lineage on outcomes. Pulmonary disease was more likely among patients with lineage(L) 2, L3 or L4, than L1 (adjusted odds ratio (aOR) 1.79, (95% confidence interval 1.49–2.15), p<0.001; aOR = 1.40(1.09–1.79), p = 0.007; aOR = 2.04(1.65–2.53), p<0.001, respectively). Among patients with pulmonary TB, those with L1 had greater risk of cavities on chest radiography versus those with L2 (aOR = 0.69(0.57–0.83), p<0.001) and L4 strains (aOR = 0.73(0.59–0.90), p = 0.002). L1 strains were more likely to cause osteomyelitis among patients with extra-pulmonary TB, versus L2-4 (p = 0.033, p = 0.008 and p = 0.049 respectively). Patients with L1 strains showed shorter time-to-sputum smear conversion than for L2. Causal mediation analysis showed the effect of lineage in each case was largely direct. The pattern of clinical phenotypes seen with L1 strains differed from modern lineages (L2-4). This has implications for clinical management and could influence clinical trial selection strategies
    corecore