571 research outputs found

    Critical illness-induced bone loss is related to deficient autophagy and histone hypomethylation

    Get PDF
    BACKGROUND Survivors of critical illness are at increased risk of fractures. This may be due to increased osteoclast formation during critical illness, leading to trabecular bone loss. Such bone loss has also been observed in Paget's disease, and has been related to deficient autophagy. Deficient autophagy has also been documented in vital organs and skeletal muscle of critically ill patients. The objective of this study was to investigate whether deficient autophagy can be linked to critical illness-induced bone loss. METHODS Osteoclasts grown in vitro and their precursor cells isolated from peripheral blood of critically ill patients and from matched healthy volunteers were analysed for the expression of autophagy genes (SQSTM1, Atg3 and Atg7), and proteins (p62, Atg-5, and microtubule-associated protein light chain 3-II (LC3-II)) and for autophagy and epigenetic signalling factors via PCR arrays and were treated with the autophagy inducer rapamycin. The effect of rapamycin was also investigated at the tissue level in an in vivo rabbit model of critical illness. RESULTS Many more osteoclasts formed in vitro from the blood precursor cells isolated from critically ill patients, which accumulated p62, and displayed reduced expression of Atg5, Atg7, and LC3-II compared to healthy controls, suggesting deficient autophagy, whilst addition of rapamycin reduced osteoclast formation. PCR arrays revealed a down-regulation of histone methyltransferases coupled with an up-regulation of negative regulators of autophagy. Critically ill rabbits displayed a reduction in trabecular and cortical bone, which was rescued with rapamycin. CONCLUSIONS Deficient autophagy in osteoclasts and their blood precursor cells at least partially explained aberrant osteoclast formation during critical illness and was linked to global histone hypomethylation. Treatment with the autophagy activator Rapamycin reduced patient osteoclast formation in vitro and reduced the amount of bone loss in critically ill rabbits in vivo. These findings may help to develop novel therapeutic targets to prevent critical illness-induced bone loss

    Method For Making 2-Electron Response Reduced Density Matrices Approximately N-representable

    Get PDF
    In methods like geminal-based approaches or coupled cluster that are solved using the projected Schr\"odinger equation, direct computation of the 2-electron reduced density matrix (2-RDM) is impractical and one falls back to a 2-RDM based on response theory. However, the 2-RDMs from response theory are not NN-representable. That is, the response 2-RDM does not correspond to an actual physical NN-electron wave function. We present a new algorithm for making these non-NN-representable 2-RDMs approximately NN-representable, i.e. it has the right symmetry and normalization and it fulfills the PP-, QQ- and GG-conditions. Next to an algorithm which can be applied to any 2-RDM, we have also developed a 2-RDM optimization procedure specifically for seniority-zero 2-RDMs. We aim to find the 2-RDM with the right properties that is the closest (in the sense of the Frobenius norm) to the non-N-representable 2-RDM by minimizing the square norm of the difference between the initial 2-RDM and the targeted 2-RDM under the constraint that the trace is normalized and the 2-RDM, QQ- and GG-matrices are positive semidefinite, i.e. their eigenvalues are non-negative. Our method is suitable for fixing non-N-respresentable 2-RDMs which are close to being N-representable. Through the N-representability optimization algorithm we add a small correction to the initial 2-RDM such that it fulfills the most important N-representability conditions.Comment: 13 pages, 8 figure

    Use of continuous positive airway pressure reduces airway reactivity in adults with asthma

    Get PDF
    Asthma is characterised by airway hyperreactivity, which is primarily treated with β-adrenergic bronchodilators and anti-inflammatory agents. However, mechanical strain during breathing is an important modulator of airway responsiveness and we have previously demonstrated in animal models that continuous positive airway pressure (CPAP) resulted in lower in vivo airway reactivity. We now evaluated whether using nocturnal CPAP decreased airway reactivity in clinically-stable adults with asthma. Adults with stable asthma and normal spirometry used nocturnal CPAP (8-10 cmH(2)O) or sham treatment (0-2 cmH(2)O) for 7 days. Spirometry and bronchial challenges were obtained before and after treatment. The primary outcome was the provocative concentration of methacholine causing a 20% fall in forced expiratory volume in 1 s (PC(20)). The CPAP group (n=16) had a significant decrease in airway reactivity (change in (Δ)logPC(20) 0.406, p<0.0017) while the sham group (n=9) had no significant change in airway reactivity (ΔlogPC(20) 0.003, p=0.9850). There was a significant difference in the change in airway reactivity for the CPAP versus the sham group (ΔlogPC(20) 0.41, p<0.043). Our findings indicate that chronic mechanical strain of the lungs produced using nocturnal CPAP for 7 days reduced airway reactivity in clinically stable asthmatics. Future studies of longer duration are required to determine whether CPAP can also decrease asthma symptoms and/or medication usage

    Effect of CPAP on airway reactivity and airway inflammation in children with moderate-severe asthma

    Get PDF
    BACKGROUND AND OBJECTIVE: Asthma is characterized by airway hyperreactivity and airway inflammation. We previously demonstrated that adults with mild well-controlled asthma exhibited a marked decrease in airway reactivity (PC20 increased >2-fold) after using nocturnal continuous positive airway pressure (CPAP) for 1 week. If CPAP produces a similar suppression of airway reactivity in children with moderate-severe asthma, who require chronic use of corticosteroids, then this non-pharmacological therapy might provide a beneficial alternative or supplemental therapy in these subjects. METHODS: Children aged 8-17 years with moderate-severe asthma were treated with 4 weeks of nocturnal CPAP (8-10 cm H2 O) or sham CPAP (<2 cm H2 O). Adherence was monitored with a modem installed in the equipment or by memory cards. Airway reactivity, assessed by methacholine bronchial challenge, was measured prior to and following treatment. RESULTS: The percentage of subjects adherent to treatment was similar in both groups (19/27 CPAP vs 19/28 sham, ~70%). There was a tendency for PC20 to increase with treatment in both groups (3.0-5.3 mg/mL CPAP vs 3.2 to 4.3 mg/mL sham, P = 0.083); however, the change did not differ significantly between groups (P = 0.569). CONCLUSION: We found that the 4-week treatment with nocturnal CPAP did not produce a twofold suppression of airway reactivity in children with moderate-severe asthma

    Regulation of 130kDa smooth muscle myosin light chain kinase expression by an intronic CArG element

    Get PDF
    The mylk1 gene encodes a 220-kDa nonmuscle myosin light chain kinase (MLCK), a 130-kDa smooth muscle MLCK (smMLCK), as well as the non-catalytic product telokin. Together, these proteins play critical roles in regulating smooth muscle contractility. Changes in their expression are associated with many pathological conditions; thus, it is important to understand the mechanisms regulating expression of mylk1 gene transcripts. Previously, we reported a highly conserved CArG box, which binds serum response factor, in intron 15 of mylk1. Because this CArG element is near the promoter that drives transcription of the 130-kDa smMLCK, we examined its role in regulating expression of this transcript. Results show that deletion of the intronic CArG region from a β-galactosidase reporter gene abolished transgene expression in mice in vivo. Deletion of the CArG region from the endogenous mylk1 gene, specifically in smooth muscle cells, decreased expression of the 130-kDa smMLCK by 40% without affecting expression of the 220-kDa MLCK or telokin. This reduction in 130-kDa smMLCK expression resulted in decreased phosphorylation of myosin light chains, attenuated smooth muscle contractility, and a 24% decrease in small intestine length that was associated with a significant reduction of Ki67-positive smooth muscle cells. Overall, these data show that the CArG element in intron 15 of the mylk1 gene is necessary for maximal expression of the 130-kDa smMLCK and that the 130-kDa smMLCK isoform is specifically required to regulate smooth muscle contractility and small intestine smooth muscle cell proliferation

    Error analysis of nuclear mass fits

    Full text link
    We discuss the least-square and linear-regression methods, which are relevant for a reliable determination of good nuclear-mass-model parameter sets and their errors. In this perspective, we define exact and inaccurate models and point out differences in using the standard error analyses for them. As an illustration, we use simple analytic models for nuclear binding energies and study the validity and errors of models' parameters, and uncertainties of its mass predictions. In particular, we show explicitly the influence of mass-number dependent weights on uncertainties of liquid-drop global parameters.Comment: 10 RevTeX pages, 9 figures, submitted to Physical Review
    • …
    corecore