718 research outputs found

    Testing procedures for carbon fiber reinforced plastic components

    Get PDF
    Tests for studying the basic material are considered and quality control investigations involving preimpregnated materials (prepreg) are discussed. Attention is given to the prepreg area weight, the fiber area weight of prepregs, the resin content, volatile components, the effective thickness, resin flow, the resistance to bending strain, tensile strength, and shear strength. A description of tests conducted during the manufacturing process is also presented, taking into account X-ray methods, approaches of neutron radiography, ultrasonic procedures, resonance methods and impedance studies

    Efficacité d'un seuil artificiel sur l'oxygénation de l'eau et l'élimination de CH4 contenu dans l'eau évacuée par la barrage hydroélectrique de Petit Saut (Guyane française)

    Get PDF
    Quelques mois après le début de la mise en eau du barrage de Petit Saut, la mise en service normale de l'usine conduisait à une désoxygénation de l'eau du tronçon de rivière aval, le rendant incompatible avec la vie aquatique. La solution retenue a été la construction d'un seuil, afin d'apporter de l'oxygène et d'éliminer les gaz réducteurs produits au fond de la retenue, notamment le méthane, consommateur potentiel d'oxygène dissous.Un seuil métallique à deux lames déversantes successives a été construit ; sa configuration prend en compte les principaux critères physiques jouant un rôle significatif sur l'oxygénation de l'eau (hauteur de chute, épaisseur de la lame déversante, le dimensionnement du bassin de réception des chutes, la présence de dispositifs favorisant l'éclatement de la lame d'eau). Placé dans le canal de fuite de l'usine, à une centaine de mètres à l'aval du barrage principal, il est à l'abri des crues et ne crée pas d'obstacle supplémentaire en rivière.L'article chiffre l'effet d'aération de ce seuil pour les deux gaz O2 et CH4 dans deux configurations : celles consécutives à l'abaissement partiel de la chute amont réalisé en deux étapes. Après décembre 2001, pour le débit moyen turbiné (près de 200 m3 /s), l'efficacité d'aération du seuil a baissé de près de 10 % (gain de 80 % en oxygène dissous et élimination de 70 % et 75 % du méthane dissous). Après février 2003, pour un débit de 100 m3/s, 75 % du déficit amont en oxygène dissous est comblé et près de 70 % du méthane dissous éliminé.From the moment tropical reservoirs are impounded, climatic conditions cause rapid (within several weeks) and marked thermal stratification, especially during the dry season. This phenomenon is further exacerbated by the chemical and biochemical processes taking place in the reservoir due to the decomposition of submerged organic matter. In dense tropical forests, the overhead biomass is estimated at roughly 170 t(C)/ha, and the carbon contained in the soil is also not negligible since it is on the order of 100 t(C)/ha. The degree of biodegradability of the different compounds in the flooded biomass is variable, ranging from a few weeks for bacteria to several centuries for tree trunks.The studies carried out at Petit Saut (French Guiana) show that, immediately after impoundment, only the epilimnion (a few dozen centimetres thick) was oxygenated whereas the hypolimnion was characterized by complete anoxia and a very high methane content (about 15 mg/L). Water quality in the river downstream from the reservoir was of course strongly linked to variations in the water quality in the reservoir as well as to its operating mode. The waters passing through the turbines, coming from the bottom layers, were anoxic and loaded with fixed or volatile reducing compounds (e.g., CH4, H2 S), and were responsible for a high immediate or progressive oxygen demand. At Petit Saut, despite an inflow of good quality water, there has been a progressive deoxygenation in the river downstream due to the high methane content (roughly 8 mg/L) of the turbined water. Thus, 40 km downstream from the dam, the oxygen content was less than 2 mg/L and therefore incompatible with most aquatic life. To solve this problem, it was necessary to build an aerating weir capable of reoxygenating the turbined waters and, more importantly, eliminating reducing gases such as methane at the same time. The function of the overflow weir was to entrain air bubbles into the water and to give these bubbles a sufficiently long immersion time to ensure that they dissolve. At the time of its installation, only three examples of oxygenating weirs existed in the entire world, all located in the United States. The weir configuration was tested using a physical model to qualitatively examine the form of the flow both across the weir and downstream from it. The degree to which air bubbles were entrained in the water was also tested, but not the question of evaluating the flux of gaseous exchanges between the air and the water.The system that was finally designed by EDF, in October 1994, was a metallic weir with two consecutive falls, the configuration of which respected the main physical criteria that play a significant role in the oxygenation of water, i.e.:- the height of the falls (roughly 5.40 m, depending on the flow rate);- the thickness of the water stream, the function of which is to entrain air bubbles and keep them in the water for a sufficiently long period of time for the oxygen to dissolve (between 12 and 25 seconds, depending on the flow rate); - the dimensions of the receiving basin of the first waterfall where the air bubbles are held (5 hexagonal alveoli); and- systems to promote the fragmentation of the flow. This structure was placed in the tailrace channel of the plant, approximately 100 m downstream from the main dam. This location protected it from floods and did not create an extra obstacle in the river. In addition, it allowed the water to be re-oxygenated as soon as it left the reservoir.The efficiency of the two waterfalls of the Petit Saut re-aerating weir was tested at two different turbine flow rates: 80 m3 /s and 230 m3 /s. In 1996, the results of the measurements showed that for a flow rate of 230 m3 /s, upstream of the weir the concentrations of CH4 were around 5 mg/L and dissolved oxygen was 0.8 mg/L. Downstream from the weir CH4 concentrations were 1.3 mg/L and dissolved oxygen concentrations were 6.8 mg/L. The dissolved methane elimination rate was approximately 75 per cent. At a flow rate of 80 m3/s, upstream of the weir the concentration of CH4 was 5.5 mg/L and the dissolved oxygen concentration was 0.7 mg/L. Downstream from the weir concentrations of CH4 and dissolved oxygen were 1.0 mg/L and 7.1 mg/L, respectively. The dissolved methane elimination rate was around 80%. The efficiency of the re-oxygenation was always greater than 90%. These data prove that the efficiency of the Petit Saut weir installation was higher when the turbine flow rate was lower. This could be due to a greater waterfall height, the better entrainment of air bubbles per unit volume and/or a longer air bubble residence time in the downstream flow.Between December 2001 and February 2003, for a flow rate of 200 m3 /s, the efficiency of the weir decreased by 10%, with the dissolved methane elimination rate at around 70-75%. The level of re-oxygenation was around 80%. Since February 2003, for a flow rate of 100 m3 /s, the efficiency of the weir has decreased by 10%, the dissolved methane elimination rate was around 70% and the level of re-oxygenation was around 75%.On a local scale, the effect on the quality of the river water has been very positive, as aquatic life has been maintained. Without the weir, the methane contained in the turbined water would have been progressively transformed, along the course of the river, into carbon dioxide. In the absence of significant additions of good quality water and without the weir, a large part of the course of the river would have a dissolved oxygen content of less than 2 mg/L, the critical threshold for the maintenance of aquatic life.At present time, the results of the current ecological survey are used to support studies on biogeochemical processes

    Cross-Bedded Woody Debris From A Pliocene Forested River System In the High Arctic: Beaufort Formation, Meighen Island, Canada

    Get PDF
    Abstract: Cross-bedding, the inclined internal stratification that records the migration of certain transverse sedimentary bedforms, is nearly ubiquitous in current-transported bedload sediments. Although examples of the structure are known from inorganic clastic sediments and sedimentary rocks from practically all depositional environments and intervals of geologic history, here we report cross-bedded lenses that are composed wholly or significantly of woody debris, in Pliocene alluvium of the Beaufort Formation in the Canadian High Arctic. The uniqueness of cross-bedded woody debris has hitherto been overlooked, but we demonstrate that, in the entire Phanerozoic record, it is apparently restricted to alluvium deposited during a warm climatic interval that permitted the growth of boreal-type forests within 10° latitude of the North Pole. The marked spatiotemporal restriction of cross-bedded woody debris implies that there may be environmental factors, unique to polar forests, which promote the subaqueous transport of large amounts of fine woody debris as fluvial bedload. We propose a non-uniformitarian conceptual model for the formation of cross-bedded woody debris in forested polar rivers whereby an exceptional abundance of woody debris could accumulate, and become saturated and denser than water, due to reduced decomposition on forest floors that were subject to prolonged periods of darkness and subzero temperatures

    Late Pleistocene-Holocene alluvial stratigraphy of southern Baja California, Mexico

    Get PDF
    A late Pleistocene to Holocene alluvial stratigraphy has been established for the basins of La Paz and San José del Cabo, in the southern tip of the Baja California peninsula, Mexico. Six discrete alluvial units (Qt1 through Qt6) were differentiated across the region using a combination of geomorphologic mapping, sedimentological analysis, and soil development. These criteria were supported using radiocarbon, optically stimulated luminescence and cosmogenic depth-profile geochronology. Major aggradation started shortly after ∼70 ka (Qt2), and buildup of the main depositional units ended at ∼10 ka (Qt4). After deposition of Qt4, increasing regional incision of older units and the progressive development of a channelized alluvial landscape coincide with deposition of Qt5 and Qt6 units in a second, incisional phase. All units consist of multiple 1–3 m thick alluvial packages deposited as upper-flow stage beds that represent individual storms. Main aggradational units (Qt2-Qt4) occurred across broad (>2 km) channels in the form of sheetflood deposition while incisional stage deposits are confined to channels of ∼0.5–2 km width. Continuous deposition inside the thicker (>10 m) pre-Qt5 units is demonstrated by closely spaced dates in vertical profiles. In a few places, disconformities between these major units are nevertheless evident and indicated by partly eroded buried soils. The described units feature sedimentological traits similar to historical deposits formed by large tropical cyclone events, but also include characteristics of upper-regime flow sedimentation not shown by historical sediments, like long (>10 m) wavelength antidunes and transverse ribs. We interpret the whole sequence as indicating discrete periods during the late Pleistocene and Holocene when climatic conditions allowed larger and more frequent tropical cyclone events than those observed historically. These discrete periods are associated with times when insolation at the tropics was higher than the present-day conditions, determined by precessional cycles, and modulated by the presence of El Niño-like conditions along the tropical and northeastern Pacific. The southern Baja California alluvial record is the first to document a precession-driven alluvial chronology for the region, and it constitutes a strong benchmark for discrimination of direct tropical influence on any other alluvial record in southwestern North America

    Structure preserving schemes for mean-field equations of collective behavior

    Full text link
    In this paper we consider the development of numerical schemes for mean-field equations describing the collective behavior of a large group of interacting agents. The schemes are based on a generalization of the classical Chang-Cooper approach and are capable to preserve the main structural properties of the systems, namely nonnegativity of the solution, physical conservation laws, entropy dissipation and stationary solutions. In particular, the methods here derived are second order accurate in transient regimes whereas they can reach arbitrary accuracy asymptotically for large times. Several examples are reported to show the generality of the approach.Comment: Proceedings of the XVI International Conference on Hyperbolic Problem

    Spatial linear global instability analysis of the HIFiRE-5 elliptic cone model flow

    Full text link
    The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documente

    Plasmacytoid dendritic cells of melanoma patients present exogenous proteins to CD4+ T cells after FcγRII-mediated uptake

    Get PDF
    Plasmacytoid dendritic cells (pDCs) contribute to innate antiviral immune responses by producing type I interferons. Although human pDCs can induce T cell responses upon viral infection, it remains unclear if pDCs can present exogenous antigens. Here, we show that human pDCs exploit FcγRII (CD32) to internalize antigen–antibody complexes, resulting in the presentation of exogenous antigen to T cells. pDCs isolated from melanoma patients vaccinated with autologous monocyte-derived peptide- and keyhold limpet hemocyanin (KLH)–loaded dendritic cells, but not from nonvaccinated patients or patients that lack a humoral response against KLH, were able to stimulate KLH-specific T cell proliferation. Interestingly, we observed that internalization of KLH by pDCs depended on the presence of serum from vaccinated patients that developed an anti-KLH antibody response. Anti-CD32 antibodies inhibited antigen uptake and presentation, demonstrating that circulating anti-KLH antibodies binding to CD32 mediate KLH internalization. We conclude that CD32 is an antigen uptake receptor on pDCs and that antigen presentation by pDCs is of particular relevance when circulating antibodies are present. Antigen presentation by pDCs may thus modulate the strength and quality of the secondary phase of an immune response

    Analyzing the Influence of Diatomite and Mineral Fertilizers on the Features of Cadmium-Contaminated Urban Lawns

    Get PDF
    Contamination with heavy metals is among key anthropogenic pressures, experienced by urban lawns. It results in depletion of their environmental quality and functions. Implementation of fertilizers, containing silicon, is a promising approach to increase urban lawns’ sustainability to heavy metals’ pollution. Based on the field experiment, an influence of cadmium contamination on the chemical features and biomass quality of modeled urban green lawn ecosystems was studied. We demonstrated an increase of cadmium consumption by biomass on the second year of observations as the result of diatomite implementation together with mineral fertilizers. Both total sugar and disaccharides’ content in biomass was 15-20% higher for the contaminated plots where diatomite was implemented together with mineral fertilizers, compared to the uncontaminated control. This evidences a positive effect of the implemented reclaiming on stress tolerance of the green lawns

    Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up

    Get PDF
    We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact
    corecore