15 research outputs found

    Cuantificación por inmunomicroscopía electrónica del efecto terapéutico del EGF en úlceras del pie diabético

    No full text
    Introducción: la Inmunomicroscopía electrónica cuantitativa se aplicó recientemente en el estudio de la cuantificación de las distribuciones de determinadas proteínas en diferentes organelos celulares en fibroblastos de Úlceras de pie diabético tratados con el Factor de crecimiento epidérmico en humanos. Objetivo: el presente se enfoca en los resultados relacionados con una molécula clave [el antígeno nuclear de proliferación celular] en la señalización inducida por el Factor de crecimiento epidérmico. Desarrollo: las muestras de Úlceras de pie diabético se analizaron por la inmunomicroscopía electrónica cuantitativa. Las referencias se obtuvieron de la Base de datos Pubmed. En concordancia con una afectación funcional de la señalización mediada por el Factor de crecimiento epidérmico en el tejido de granulación de los individuos diabéticos, se observó poca detección del antígeno nuclear de proliferación celular en los fibroblastos. No obstante, el tratamiento de las Úlceras de pie diabético con el Factor de crecimiento epidérmico indujo una activación temprana del antígeno nuclear de proliferación celular en el núcleo de los fibroblastos de las Úlceras de pie diabético. Se observó, además, un incremento en el inmunomarcaje del antígeno nuclear de proliferación celular en las mitocondrias de los fibroblastos en tiempos tardíos después de la inoculación del Factor de crecimiento epidérmico. Conclusiones: esta investigación demostró la utilidad y el valor de la cuantificación de las distribuciones de inmunomarcaje en organelos celulares para el estudio de las vías de señalización intracelulares de relevancia terapéutica

    Cicatrización de heridas cutáneas y papel de los miofibroblastos

    No full text
    Objetivo: realizar una revisión de las características fundamentales de la respuesta de cicatrización de heridas (RCH) cutáneas agudas y crónicas. Materiales y Métodos: la información se obtuvo de la base de datos pubmed y de los trabajos de inves-tigación de los autores. Resultados: la RCH cutáneas se desarrolla en cuatro fases secuenciales: hemostasia, inflamación, proliferación y remodelación. Primero ocurre la activación de fibroblastos, acumulación de un infiltrado celular inflamatorio que incluye a los miofibroblastos y la alteración de la matriz extracelular local (MEC). Después ocurre proliferación de los miofibroblastos, angiogénesis y proliferación de las células epiteliales. Finalmente tiene lugar el cierre de la herida y el restablecimiento de la arquitectura normal. Las heridas crónicas no siguen el patrón normal de reparación y no ocurre la cicatrización. Esto conduce a condiciones patológicas como las úlceras del pie diabético. Los miofibroblastos desempeñan un papel clave y su evolución coincide con los eventos de la RCH. Primero ocurre la trans-diferenciación que involucra la conversión de los fibroblastos en reposo a miofibroblastos que proliferan, son fibrogénicos y contráctiles. Posteriormente ocurre la perpetuación del fenotipo activado que incluye respuestas de fibrogénesis, proliferación, contractibilidad, liberación de citoquinas proinflamatorias, quimotaxis y degradación de la MEC. La resolución involucra la remoción del exceso de MEC y de los miofibroblastos. La eliminación de estos ocurre por tres mecanismos fundamentales: apoptosis, senescencia y reversión al fenotipo de fibroblastos. Esto constituye un paso fundamental en la restitución de la integridad del tejido. Conclusiones: se presentó una revisión actualizada de la RCH fisiológica y patológica

    Antigiardial Activity of Podophyllotoxin-Type Lignans from Bursera fagaroides var. fagaroides

    No full text
    Giardiasis, a diarrheal disease, is highly prevalent in developing countries. Several drugs are available for the treatment of this parasitosis; unfortunately, all of them have variable efficacies and adverse effects. Bursera fagaroides has been known for its anti-inflammatory and antidiarrheal properties in Mexican traditional medicine. We investigated the in vitro anti-giardial activities of four podophyllotoxin-type lignans from Bursera fagaroides var. fagaroides, namely, 5′-desmethoxy-β-peltatin-A-methylether (5-DES), acetylpodophyllotoxin (APOD), burseranin (BUR), and podophyllotoxin (POD). All lignans affected the Giardia adhesion and electron microscopy images revealed morphological alterations in the caudal region, ventral disk, membrane, and flagella, to different extents. Only 5-DES, APOD, and POD caused growth inhibition. Using the Caco-2 human cell line as a model of the intestinal epithelium, we demonstrated that APOD displayed direct antigiardial killing activity and low toxicity on Caco-2 cells. This finding makes it an attractive potential starting point for new antigiardial drugs

    Repurposing Terfenadine as a Novel Antigiardial Compound

    No full text
    Giardia lamblia is a highly infectious protozoan that causes giardiasis, a gastrointestinal disease with short-term and long-lasting symptoms. The currently available drugs for giardiasis treatment have limitations such as side effects and drug resistance, requiring the search for new antigiardial compounds. Drug repurposing has emerged as a promising strategy to expedite the drug development process. In this study, we evaluated the cytotoxic effect of terfenadine on Giardia lamblia trophozoites. Our results showed that terfenadine inhibited the growth and cell viability of Giardia trophozoites in a time–dose-dependent manner. In addition, using scanning electron microscopy, we identified morphological damage; interestingly, an increased number of protrusions on membranes and tubulin dysregulation with concomitant dysregulation of Giardia GiK were observed. Importantly, terfenadine showed low toxicity for Caco-2 cells, a human intestinal cell line. These findings highlight the potential of terfenadine as a repurposed drug for the treatment of giardiasis and warrant further investigation to elucidate its precise mechanism of action and evaluate its efficacy in future research

    Curcumin Attenuates the Pathogenicity of Entamoeba histolytica by Regulating the Expression of Virulence Factors in an Ex-Vivo Model Infection

    No full text
    Infection with the enteric protozoan Entamoeba histolytica is still a serious public health problem, especially in developing countries. Amoebic liver abscess (ALA) is the most common extraintestinal manifestation of the amoebiasis, and it can lead to serious and potentially life-threatening complications in some people. ALA can be cured by metronidazole (MTZ); however, because it has poor activity against luminal trophozoites, 40–60% of treated patients get repeated episodes of invasive disease and require repeated treatments that can induce resistance to MTZ, this may emerge as an important public health problem. Anti-virulence strategies that impair the virulence of pathogens are one of the novel approaches to solving the problem. In this study, we found that low doses of curcumin (10 and 50 μM) attenuate the virulence of E. histolytica without affecting trophozoites growth or triggering liver injury. Curcumin (CUR) decreases the expression of genes associated with E. histolytica virulence (gal/galnac lectin, ehcp1, ehcp5, and amoebapore), and is correlated with significantly lower amoebic invasion. In addition, oxidative stress is critically involved in the etiopathology of amoebic liver abscess; our results show no changes in mRNA expression levels of superoxide dismutase (SOD) and catalase (CAT) after E. histolytica infection, with or without CUR. This study provides clear evidence that curcumin could be an anti-virulence agent against E. histolytica, and makes it an attractive potential starting point for effective treatments that reduce downstream amoebic liver abscess

    Characterization of the rat pituitary capsule: Evidence that the cerebrospinal fluid filled the pituitary cleft and the inner side of the capsule.

    No full text
    In humans, the pituitary gland is covered by a fibrous capsule and is considered a continuation of the meningeal sheath. However, in rodents some studies concluded that only the pars tuberalis (PT) and pars nervosa (PN) are enwrapped by the pia mater, while others showed that the whole gland is covered by this sheath. At PT the median eminence subarachnoid drains cerebrospinal fluid (CSF) to its cisternal system representing a pathway to the hypothalamus. In the present study we examined the rat pituitary capsule to elucidate its configuration, its physical interaction with the pituitary border and its relationship with the CSF. Furthermore, we also revisited the histology of the pituitary cleft and looked whether CSF drained in it. To answer such questions, we used scanning and transmission electron microscopy, intracerebroventricular infusion of Evan´s blue, fluorescent beads, and sodium fluorescein. The latter was measured in the pars distalis (PD) and various intracranial tissues. We found a pituitary capsule resembling leptomeninges, thick at the dorsal side of the pars intermedia (PI) and PD, thicker at the level of PI in contiguity with the PN and thinner at the rostro-ventral side as a thin membrane of fibroblast-like cells embedded in a fibrous layer. The capsule has abundant capillaries on all sides. Our results showed that the CSFs bathe between the capsule and the surface of the whole gland, and ciliate cells are present in the pituitary border. Our data suggest that the pituitary gland intercommunicates with the central nervous system (CNS) through the CSF

    Antigiardial Activity of Acetylsalicylic Acid Is Associated with Overexpression of HSP70 and Membrane Transporters

    No full text
    Giardia lamblia is a flagellated protozoan responsible for giardiasis, a worldwide diarrheal disease. The adverse effects of the pharmacological treatments and the appearance of drug resistance have increased the rate of therapeutic failures. In the search for alternative therapeutics, drug repositioning has become a popular strategy. Acetylsalicylic acid (ASA) exhibits diverse biological activities through multiple mechanisms. However, the full spectrum of its activities is incompletely understood. In this study we show that ASA displayed direct antigiardial activity and affected the adhesion and growth of trophozoites in a time-dose-dependent manner. Electron microscopy images revealed remarkable morphological alterations in the membrane, ventral disk, and caudal region. Using mass spectrometry and real-time quantitative reverse transcription (qRT-PCR), we identified that ASA induced the overexpression of heat shock protein 70 (HSP70). ASA also showed a significant increase of five ATP-binding cassette (ABC) transporters (giABC, giABCP, giMDRP, giMRPL and giMDRAP1). Additionally, we found low toxicity on Caco-2 cells. Taken together, these results suggest an important role of HSPs and ABC drug transporters in contributing to stress tolerance and protecting cells from ASA-induced stress

    Extracellular Vesicles Released from Mycobacterium tuberculosis-Infected Neutrophils Promote Macrophage Autophagy and Decrease Intracellular Mycobacterial Survival

    No full text
    Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100–1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-β, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb

    Video_4.wmv

    No full text
    <p>Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100–1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-β, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb.</p
    corecore