13,199 research outputs found

    Dark Matter, Sparticle Spectroscopy and Muon (g2)(g-2) in SU(4)c×SU(2)L×SU(2)RSU(4)_c \times SU(2)_L \times SU(2)_R

    Get PDF
    We explore the sparticle mass spectra including LSP dark matter within the framework of supersymmetric SU(4)c×SU(2)L×SU(2)RSU(4)_c \times SU(2)_L \times SU(2)_R (422) models, taking into account the constraints from extensive LHC and cold dark matter searches. The soft supersymmetry-breaking parameters at MGUTM_{GUT} can be non-universal, but consistent with the 422 symmetry. We identify a variety of coannihilation scenarios compatible with LSP dark matter, and study the implications for future supersymmetry searches and the ongoing muon g-2 experiment.Comment: 21 pages, 8 fig

    The B1 shock in the L1157 outflow as seen at high spatial resolution

    Full text link
    We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K), HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology and spectral profiles has shown that the highest velocity gas is confined in a few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall of the gas cavity excavated by the shock expansion. A large velocity gradient model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6 cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5 cm^-3 for the density of the high velocity bullets. The origin of the bullets is still uncertain: they could be the result of local instabilities produced by the interaction of the jet with the ambient medium or could be clump already present in the ambient medium that are excited and accelerated by the expanding outflow. The column densities of the observed species can be reproduced qualitatively by the presence in B1 of a C-type shock and only models where the gas reaches temperatures of at least 4000 K can reproduce the observed HC3N column density.Comment: 13 pages, 12 figure

    The presence of toxic pollutants in buildings and construction materials increases the risk of cancer

    Get PDF
    To this day, construction materials that contain toxic and carcinogenic compounds are still used. These materials contribute to increase the levels of these compounds inside buildings, thus increasing the risk of cancer. It is necessary to avoid the use of these materials, carry out correct ventilation of buildings, improve energy efficiency, and design and build green buildings in order to reduce the risk of cancer and therefore to improve the health of the inhabitants

    Role of SODC protein in antineoplastic drug resistance

    Get PDF
    Cells need homeostasis to survive, therefore, they use the different pathways available to obtain it. The SODC protein overexpression, which is implicated in this process, suggests that could be implicated in the process of acquisition resistance during chemotherapy.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Editorial: Multidisciplinary approach in health: new strategies from the perspective of education, management, culture and gender

    Get PDF
    Editorial on the Research Topic Multidisciplinary approach in health: new strategies from the perspective of education, management, culture and gende

    A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis

    Get PDF
    Abscisic acid (ABA) is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls), which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY) and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone
    corecore