18 research outputs found

    Machine learning models for the prediction of acuity and variability of eye-positioning using features extracted from oculography

    No full text
    During the first months of life, babies can be affected by congenital nystagmus, an ocular-motor disease making visual acuity decrease. Electrooculography (EOG) and Infrared-oculography are utilized in order to perform eye-tracking of patients, giving the possibility to extract from the signals several useful features. In the past years, different algorithms were used to perform the detection of events on these features and many researchers studied the relationships between the features and physiological values such as visual acuity and variability of eye-positioning. In this paper, machine learning techniques were used to predict visual acuity and the variability of eye positioning using features extracted from EOG. The EOG of 20 patients was acquired, signals underwent a pre-processing, and some parameters were extracted through a custom-made software. Frequency, amplitude, intensity, nystagmus foveation periods and both amplitude and frequency of baseline oscillation were the features used as input for the algorithms. Knime analytics platform was employed to perform a predictive analysis using Random Forests, Logistic Regression Tree, Gradient boosted tree, K nearest neighbour, Multilayer Perceptron and Support Vector Machine. Finally, some evaluation metrics were computed employing a leave one out cross validation. Considering the coefficient of determination, visual acuity achieved values between 0.67 and 0.85 while variability of eye positioning ranged from 0.62 to 0.79. These results were compared with past analysis with the exact same aims and dataset, obtaining a greater value as regards the variability of eye positioning and comparable results exploiting all the features related to nystagmus as regards the visual acuity. This paper showed the feasibility of a regression analysis performed through machine learning algorithms in detecting relationships among variables related to congenital nystagmus. © 2020, IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature

    Potential Biomechanical Overload on Skeletal Muscle Structures in Students During Walk with Backpack

    No full text
    Although a very large number of students in the world use uncomfortable and heavy backpacks, their negative musculoskeletal effects on gait and posture are still not well investigated. Aim of the paper has been the study of differences affecting the kinematic gait parameters during free walk and walk with backpack to evaluate their potential influence on skeletal-muscle disorders. Gait recordings in both conditions on 50 healthy volunteers participating students have been performed by a G-WALK inertial system calculating the main kinematic parameters namely Propulsion index and Initial Double Support, Stance and Swing Phases. ANOVA results between both walking conditions showed that all gait cycle studied values are significantly negatively affected by walking with backpack supposing a potential biomechanical overload on skeletal muscle structures in students exposed to these prolonged conditions

    The E-Textile for Biomedical Applications: A Systematic Review of Literature

    No full text
    The use of e-textile technologies spread out in the scientific research with several applications in both medical and nonmedical world. In particular, wearable technologies and miniature electronics devices were implemented and tested for medical research purposes. In this paper, a systematic review regarding the use of e-textile for clinical applications was conducted: the Scopus and Pubmed databases were investigate by considering research studies from 2010 to 2020. Overall, 262 papers were found, and 71 of them were included in the systematic review. Of the included studies, 63.4% focused on information and communication technology studies, while the other 36.6% focused on industrial bioengineering applications. Overall, 56.3% of the research was published as an article, while the remainder were conference papers. Papers included in the review were grouped by main aim into cardiological, muscular, physical medicine and orthopaedic, respiratory, and miscellaneous applications. The systematic review showed that there are several types of applications regarding e-textile in medicine and several devices were implemented as well; nevertheless, there is still a lack of validation studies on larger cohorts of subjects since the majority of the research only focuses on developing and testing the new device without considering a further extended validation

    Work-Related Risk Assessment According to the Revised NIOSH Lifting Equation: A Preliminary Study Using a Wearable Inertial Sensor and Machine Learning

    No full text
    Many activities may elicit a biomechanical overload. Among these, lifting loads can cause work-related musculoskeletal disorders. Aspiring to improve risk prevention, the National Institute for Occupational Safety and Health (NIOSH) established a methodology for assessing lifting actions by means of a quantitative method based on intensity, duration, frequency and other geometrical characteristics of lifting. In this paper, we explored the machine learning (ML) feasibility to classify biomechanical risk according to the revised NIOSH lifting equation. Acceleration and angular velocity signals were collected using a wearable sensor during lifting tasks performed by seven subjects and further segmented to extract time-domain features: root mean square, minimum, maximum and standard deviation. The features were fed to several ML algorithms. Interesting results were obtained in terms of evaluation metrics for a binary risk/no-risk classification; specifically, the tree-based algorithms reached accuracies greater than 90% and Area under the Receiver operating curve characteristics curves greater than 0.9. In conclusion, this study indicates the proposed combination of features and algorithms represents a valuable approach to automatically classify work activities in two NIOSH risk groups. These data confirm the potential of this methodology to assess the biomechanical risk to which subjects are exposed during their work activity

    Reducing the Healthcare-Associated Infections in a Rehabilitation Hospital under the Guidance of Lean Six Sigma and DMAIC

    No full text
    The reduction of healthcare-associated infections (HAIs) is one of the most important issues in the healthcare context for every type of hospital. In three operational units of the Scientific Clinical Institutes Maugeri SpA SB, a rehabilitation hospital in Cassano delle Murge (Italy), some corrective measures were introduced in 2017 to reduce the occurrence of HAIs. Lean Six Sigma was used together with the Define, Measure, Analyze, Improve, Control (DMAIC) roadmap to analyze both the impact of such measures on HAIs and the length of hospital stay (LOS) in the Rehabilitative Cardiology, Rehabilitative Neurology, Functional Recovery and Rehabilitation units in the Medical Center for Intensive Rehabilitation. The data of 2415 patients were analyzed, considering the phases both before and after the introduction of the measures. The hospital experienced a LOS reduction in both patients with and without HAIs; in particular, Cardiology had the greatest reduction for patients with infections (−7 days). The overall decrease in HAIs in the hospital was 3.44%, going from 169 to 121 cases of infections. The noteworthy decrease in LOS implies an increase in admissions and in the turnover indicator of the hospital, which has a positive impact on the hospital management as well as on costs

    Statistical Analysis and Kinematic Assessment of Upper Limb Reaching Task in Parkinson’s Disease

    No full text
    The impact of neurodegenerative disorders is twofold; they affect both quality of life and healthcare expenditure. In the case of Parkinson’s disease, several strategies have been attempted to support the pharmacological treatment with rehabilitation protocols aimed at restoring motor function. In this scenario, the study of upper limb control mechanisms is particularly relevant due to the complexity of the joints involved in the movement of the arm. For these reasons, it is difficult to define proper indicators of the rehabilitation outcome. In this work, we propose a methodology to analyze and extract an ensemble of kinematic parameters from signals acquired during a complex upper limb reaching task. The methodology is tested in both healthy subjects and Parkinson’s disease patients (N = 12), and a statistical analysis is carried out to establish the value of the extracted kinematic features in distinguishing between the two groups under study. The parameters with the greatest number of significances across the submovements are duration, mean velocity, maximum velocity, maximum acceleration, and smoothness. Results allowed the identification of a subset of significant kinematic parameters that could serve as a proof-of-concept for a future definition of potential indicators of the rehabilitation outcome in Parkinson’s disease

    Bidimensional and Tridimensional Poincaré Maps in Cardiology: A Multiclass Machine Learning Study

    No full text
    Heart rate is a nonstationary signal and its variation may contain indicators of current disease or warnings about impending cardiac diseases. Hence, heart rate variation analysis has become a noninvasive tool to further study the activities of the autonomic nervous system. In this scenario, the Poincaré plot analysis has proven to be a valuable tool to support cardiac diseases diagnosis. The study’s aim is a preliminary exploration of the feasibility of machine learning to classify subjects belonging to five cardiac states (healthy, hypertension, myocardial infarction, congestive heart failure and heart transplanted) using ten unconventional quantitative parameters extracted from bidimensional and three-dimensional Poincaré maps. Knime Analytic Platform was used to implement several machine learning algorithms: Gradient Boosting, Adaptive Boosting, k-Nearest Neighbor and Naïve Bayes. Accuracy, sensitivity and specificity were computed to assess the performances of the predictive models using the leave-one-out cross-validation. The Synthetic Minority Oversampling technique was previously performed for data augmentation considering the small size of the dataset and the number of features. A feature importance, ranked on the basis of the Information Gain values, was computed. Preliminarily, a univariate statistical analysis was performed through one-way Kruskal Wallis plus post-hoc for all the features. Machine learning analysis achieved interesting results in terms of evaluation metrics, such as demonstrated by Adaptive Boosting and k-Nearest Neighbor (accuracies greater than 90%). Gradient Boosting and k-Nearest Neighbor reached even 100% score in sensitivity and specificity, respectively. The most important features according to information gain are in line with the results obtained from the statistical analysis confirming their predictive power. The study shows the proposed combination of unconventional features extracted from Poincaré maps and well-known machine learning algorithms represents a valuable approach to automatically classify patients with different cardiac diseases. Future investigations on enriched datasets will further confirm the potential application of this methodology in diagnostic
    corecore