814 research outputs found

    Self-contained breathing apparatus

    Get PDF
    A self-contained breathing apparatus with automatic redundant fluid pressure controls and a facemask mounted low pressure whistle alarm is described. The first stage of the system includes pair of pressure regulators connected in parallel with different outlet pressures, both of which reduce the pressure of the stored supply gas to pressures compatible with the second stage breathing demand regulator. A primary regulator in the first stage delivers a low output pressure to the demand regulator. In the event of a failure closed condition of the primary regulator an automatic transfer valve switches on the backup regulator. A warning that the supply pressure has been depleted is also provided by a supply pressure actuated transfer valve which transfers the output of the first stage pressure regulators from the primary to the backup regulator. The alarm is activated in either the failure closed condition or if the supply pressure is reduced to a dangerously low level

    Single-particle vs. pair superfluidity in a bilayer system of dipolar bosons

    Get PDF
    We consider the ground state of a bilayer system of dipolar bosons, where dipoles are oriented by an external field in the direction perpendicular to the parallel planes. Quantum Monte Carlo methods are used to calculate the ground-state energy, the one-body and two-body density matrix, and the superfluid response as a function of the separation between layers. We find that by decreasing the interlayer distance for fixed value of the strength of the dipolar interaction, the system undergoes a quantum phase transition from a single-particle to a pair superfluid. The single-particle superfluid is characterized by a finite value of both the atomic condensate and the super-counterfluid density. The pair superfluid phase is found to be stable against formation of many-body cluster states and features a gap in the spectrum of elementary excitations.Comment: 4 figure

    Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures

    Full text link
    We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed.Comment: 15 pages, 2 figures, submitted to J. Phys.

    Equation of state of a Fermi gas in the BEC-BCS crossover: a quantum Monte Carlo study

    Full text link
    We calculate the equation of state of a two-component Fermi gas with attractive short-range interspecies interactions using the fixed-node diffusion Monte Carlo method. The interaction strength is varied over a wide range by tuning the value aa of the s-wave scattering length of the two-body potential. For a>0a>0 and aa smaller than the inverse Fermi wavevector our results show a molecular regime with repulsive interactions well described by the dimer-dimer scattering length am=0.6aa_m=0.6 a. The pair correlation functions of parallel and opposite spins are also discussed as a function of the interaction strength.Comment: 4 pages, 3 figures. Version accepted for publication in Phys. Rev. Lett.. Figure 3 removed. Expanded discussion of correlation functions. New figure 4. Calculation of pair correlation functions improved: more statistics and extrapolation technique to remove residual dependences on the trial wave function. Added comparison with Bogoliubov theory. References adde

    Theory of Bose-Einstein condensation and superfluidity of two-dimensional polaritons in an in-plane harmonic potential

    Full text link
    Recent experiments have shown that it is possible to create an in-plane harmonic potential trap for a two-dimensional (2D) gas of exciton-polaritons in a microcavity structure, and evidence has been reported of Bose-Einstein condensation of polaritons accumulated in this type of trap. We present here the theory of Bose-Einstein condensation (BEC) and superfluidity of the exciton polaritons in a harmonic potential trap. Along the way, we determine a general method for defining the superfluid fraction in a 2D trap, in terms of angular momentum representation. We show that in the continuum limit, as the trap becomes shallower the superfluid fraction approaches the 2D Kosterlitz-Thouless limit, while the condensate fraction approaches zero, as expected.Comment: 14 pages, 5 figures. Accepted for publication by Physical review

    Correlation functions of a Lieb-Liniger Bose gas

    Full text link
    The ground-state correlation functions of a one-dimensional homogeneous Bose system described by the Lieb-Liniger Hamiltonian are investigated by using exact quantum Monte Carlo techniques. This article is an extension of a previous study published in Phys. Rev. A {\bf 68}, 031602 (2003). New results on the local three-body correlator as a function of the interaction strength are included and compared with the measured value from three-body loss experiments. We also carry out a thorough study of the short- and long-range behavior of the one-body density matrix.Comment: 10 pages, 8 figures, contribution to Cortona BEC JPB special issu

    Strong coupling Bose polarons in a two-dimensional gas

    Get PDF
    We study the properties of Bose polarons in two dimensions using quantum Monte Carlo techniques. Results for the binding energy, the effective mass, and the quasiparticle residue are reported for a typical strength of interactions in the gas and for a wide range of impurity-gas coupling strengths. A lower and an upper branch of the quasiparticle exist. The lower branch corresponds to an attractive polaron and spans from the regime of weak coupling where the impurity acts as a small density perturbation of the surrounding medium to deep bound states which involve many particles from the bath and extend as far as the healing length. The upper branch corresponds to an excited state where due to repulsion a low-density bubble forms around the impurity but might be unstable against decay into many-body bound states. Interaction effects strongly affect the quasiparticle properties of the polaron. In particular, in the strongly correlated regime, the impurity features a vanishing quasiparticle residue, signaling the transition from an almost free quasiparticle to a bound state involving many atoms from the bath.Comment: 8 pages, 5 figures

    Anomalous fluctuations of the condensate in interacting Bose gases

    Full text link
    We find that the fluctuations of the condensate in a weakly interacting Bose gas confined in a box of volume VV follow the law ∼V4/3\sim V^{4/3}. This anomalous behaviour arises from the occurrence of infrared divergencies due to phonon excitations and holds also for strongly correlated Bose superfluids. The analysis is extended to an interacting Bose gas confined in a harmonic trap where the fluctuations are found to exhibit a similar anomaly.Comment: 4 pages, RevTe

    Momentum distribution and condensate fraction of a Fermi gas in the BCS-BEC crossover

    Full text link
    By using the diffusion Monte Carlo method we calculate the one- and two-body density matrix of an interacting Fermi gas at T=0 in the BCS-BEC crossover. Results for the momentum distribution of the atoms, as obtained from the Fourier transform of the one-body density matrix, are reported as a function of the interaction strength. Off-diagonal long-range order in the system is investigated through the asymptotic behavior of the two-body density matrix. The condensate fraction of fermionic pairs is calculated in the unitary limit and on both sides of the BCS-BEC crossover.Comment: 4 pages, 4 figure

    Collective and single particle excitations of a trapped Bose gas

    Get PDF
    The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with the ones of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulae for the density of states and the quantum depletion of the condensate.Comment: 16 pages, REVTeX, 6 figures; misprints corrected; some clarifying remarks include
    • …
    corecore