172 research outputs found

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Boundary Zonal Flow in Rotating Turbulent Rayleigh-Bénard Convection

    Get PDF
    For rapidly rotating turbulent Rayleigh–Bénard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one, whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like Ra1/4Ek2/3 where the Ekman number Ek decreases with increasing rotation rate

    Resistance to antibody neutralization in HIV-2 infection occurs in late stage disease and is associated with X4 tropism

    Get PDF
    This is a non-final version of an article published in final form in AIDS. 28 November 2012 - Volume 26 - Issue 18 - p 2275–2284Objectives: To characterize the nature and dynamics of the neutralizing antibody (NAb) response and escape in chronically HIV-2 infected patients.Methods: Twenty-eight chronically infected adults were studied over a period of 1-4 years. The neutralizing activity of plasma IgG antibodies against autologous and heterologous primary isolates was analyzed using a standard assay in TZM-bl cells. Coreceptor usage was determined in GHOST cells. The sequence and predicted 3Dstructure of the C2V3C3 Env region were determined for all isolates.Results: Only 50% of the patients consistently produced IgG NAbs to autologous and contemporaneous virus isolates. In contrast, 96% of the patients produced IgG antibodies that neutralized at least two isolates of a panel of six heterologous R5 isolates. Breadth and potency of the neutralizing antibodies were positively associated with the number of CD4+ T cells and with the titer and avidity of C2V3C3-specific binding IgG antibodies. X4 isolates were obtained only from late stage disease patients and were fully resistant to neutralization. The V3 loop of X4 viruses was longer, had a higher net charge and differed markedly in secondary structure compared to R5 viruses.Conclusions: Most HIV-2 patients infected with R5 isolates produce C2V3C3-specific neutralizing antibodies whose potency and breadth decreases as the disease progresses. Resistance to antibody neutralization occurs in late stage disease and is usually associated with X4 viral tropism and major changes in V3 sequence and conformation. Our studies support a model of HIV-2 pathogenesis in which the neutralizing antibodies play a central role and have clear implications for the vaccine field.Fundação para a Ciência e Tecnologia, Portuga

    Козацькі могили у творчості Тараса Шевченка

    Get PDF
    The detoxification of ammonia occurs mainly through conversion of ammonia to urea in the liver via the urea cycle and glutamine synthesis. Congenital portosystemic shunts (CPSS) in dogs cause hyperammonemia eventually leading to hepatic encephalopathy. In this study, the gene expression of urea cycle enzymes (carbamoylphosphate synthetase (CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase (ARG1)), N-acetylglutamate synthase (NAGS), Glutamate dehydrogenase (GLUD1), and glutamate-ammonia ligase (GLUL) was evaluated in dogs with CPSS before and after surgical closure of the shunt. Additionally, immunohistochemistry was performed on urea cycle enzymes and GLUL on liver samples of healthy dogs and dogs with CPSS to investigate a possible zonal distribution of these enzymes within the liver lobule and to investigate possible differences in distribution in dogs with CPSS compared to healthy dogs. Furthermore, the effect of increasing ammonia concentrations on the expression of the urea cycle enzymes was investigated in primary hepatocytes in vitro. Gene-expression of CPS1, OTC, ASL, GLUD1 and NAGS was down regulated in dogs with CPSS and did not normalize after surgical closure of the shunt. In all dogs GLUL distribution was localized pericentrally. CPS1, OTC and ASS1 were localized periportally in healthy dogs, whereas in CPSS dogs, these enzymes lacked a clear zonal distribution. In primary hepatocytes higher ammonia concentrations induced mRNA levels of CPS1. We hypothesize that the reduction in expression of urea cycle enzymes, NAGS and GLUD1 as well as the alterations in zonal distribution in dogs with CPSS may be caused by a developmental arrest of these enzymes during the embryonic or early postnatal phase

    Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block

    Get PDF
    Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturation in the Wilson–Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson–Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures

    Inhibition of plasmin-mediated TAFI activation may affect development but not progression of abdominal aortic aneurysms

    Get PDF
    Objective: Thrombin-activatable fibrinolysis inhibitor (TAFI) reduces the breakdown of fibrin clots through its action as an indirect inhibitor of plasmin. Studies in TAFI-deficient mice have implicated a potential role for TAFI in Abdominal Aortic Aneurysm (AAA) disease. The role of TAFI inhibition on AAA formation in adult ApoE-/- mice is unknown. The aim of this paper was to investigate the effects of TAFI inhibition on AAA development and progression. Methods: Using the Angiotensin II model of AAA, male ApoE-/- mice were infused with Angiotensin II 750ng/kg/min with or without a monoclonal antibody inhibitor of plasmin-mediated activation of TAFI, MA-TCK26D6, or a competitive small molecule inhibitor of TAFI, UK-396082. Results: Inhibition of TAFI in the Angiotensin II model resulted in a decrease in the mortality associated with AAA rupture (from 40.0% to 16.6% with MA-TCK26D6 (log-rank Mantel Cox test p = 0.16), and 8.3% with UK-396082 (log-rank Mantel Cox test p = 0.05)). Inhibition of plasmin-mediated TAFI activation reduced the incidence of AAA from 52.4% to 30.0%. However, late treatment with MA-TCK26D6 once AAA were already established had no effect on the progression of AAA in this model. Conclusions: The formation of intra-mural thrombus is responsible for the dissection and early rupture in the angiotensin II model of AAA, and this process can be prevented through inhibition of TAFI. Late treatment with a TAFI inhibitor does not prevent AAA progression. These data may indicate a role for inhibition of plasmin-mediated TAFI activation in the early stages of AAA development, but not in its progression

    Main assumptions for energy pathways

    Full text link
    © The Author(s) 2019. The aim of this chapter is to make the scenario calculations fully transparent and comprehensible to the scientific community. It provides the scenario narratives for the reference case (5.0 °C) as well as for the 2.0 °C and 1.5 °C on a global and regional basis. Cost projections for all fossil fuels and renewable energy technologies until 2050 are provided. Explanations are given for all relevant base year data for the modelling and the main input parameters such as GDP, population, renewable energy potentials and technology parameters
    corecore