16 research outputs found

    OLIgo mass profiling (OLIMP) of extracellular polysaccharides.

    Get PDF
    The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling. An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite. Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)(1) (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself(2), and is amenable to high-throughput analyses(3). While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall. OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes(4). For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase(5, 11, 12, 13), xylan using an endo-beta-(1-4)-xylanase (6,7), or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase (8). Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined (9)

    O-Acetylation of Plant Cell Wall Polysaccharides

    Get PDF
    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production

    Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants

    Get PDF
    MAIN CONCLUSION: PAE8 and PAE9 have pectin acetylesterase activity and together remove one-third of the cell wall acetate associated with pectin formation in Arabidopsis leaves. Inpae8andpae9mutants, substantial amounts of acetate accumulate in cell walls. In addition, the inflorescence stem height is decreased. Pectic polysaccharides constitute a significant part of the primary cell walls in dicotyledonous angiosperms. This diverse group of polysaccharides has been implicated in several physiological processes including cell-to-cell adhesion and pathogenesis. Several pectic polysaccharides contain acetyl-moieties directly affecting their physical properties such as gelling capacity, an important trait for the food industry. In order to gain further insight into the biological role of pectin acetylation, a reverse genetics approach was used to investigate the function of genes that are members of the Pectin AcetylEsterase gene family (PAE) in Arabidopsis. Mutations in two members of the PAE family (PAE8 and PAE9) lead to cell walls with an approximately 20 % increase in acetate content. High-molecular-weight fractions enriched in pectic rhamnogalacturonan I (RGI) extracted from the mutants had increased acetate content. In addition, the pae8 mutant displayed increased acetate content also in low-molecular-weight pectic fractions. The pae8/pae9-2 double mutant exhibited an additive effect by increasing wall acetate content by up to 37 %, suggesting that the two genes are not redundant and act on acetyl-substituents of different pectic domains. The pae8 and pae8/pae9-2 mutants exhibit reduced inflorescence growth underscoring the role of pectic acetylation in plant development. When heterologously expressed and purified, both gene products were shown to release acetate from the corresponding mutant pectic fractions in vitro. PAEs play a significant role in modulating the acetylation state of pectic polymers in the wall, highlighting the importance of apoplastic metabolism for the plant cell and plant growth. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00425-014-2139-6) contains supplementary material, which is available to authorized users

    HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology

    Get PDF
    We present HepatoNet1, a manually curated large-scale metabolic network of the human hepatocyte that encompasses >2500 reactions in six intracellular and two extracellular compartments.Using constraint-based modeling techniques, the network has been validated to replicate numerous metabolic functions of hepatocytes corresponding to a reference set of diverse physiological liver functions.Taking the detoxification of ammonia and the formation of bile acids as examples, we show how these liver-specific metabolic objectives can be achieved by the variable interplay of various metabolic pathways under varying conditions of nutrients and oxygen availability

    Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD

    Get PDF
    Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp(4), serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1–5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf(4) which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its’ product, Hyp-Araf(4), point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae

    OLIgo Mass Profiling (OLIMP) of Extracellular Polysaccharides

    No full text
    The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling. An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite. Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)(1) (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself(2), and is amenable to high-throughput analyses(3). While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall. OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes(4). For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase(5, 11, 12, 13), xylan using an endo-β-(1-4)-xylanase (6,7), or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase (8). Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined (9)

    Conversion of Oxygenates on H-ZSM-5 Zeolites—Effects of Feed Structure and Si/Al Ratio on the Product Quality

    No full text
    The conversion of different biogenic feedstocks to hydrocarbons is a major challenge when ensuring hydrocarbon and fuel supply in spite of the heterogeneity of this feed. Flexible adaptation to changing compositions is mandatory for the respective processes. In this study, different oxygenate model feeds, such as alcohols, aldehydes, carboxylic acids and esters, were converted at 500 °C and 5 barg H2 using H-ZSM-5 zeolite catalysts with various Si/Al ratios to identify the relationship between the feed structure and the final product distribution. As the main outcome, the product distribution becomes increasingly independent of the feed structure for Al-rich H-ZSM-5 catalyst samples at low Time on Stream (ToS). Some minor exceptions are the increased formation of aromatics during ToS for carbonyl oxygenates compared to primary alcohols and the dominance of initial deoxygenation products for Si-rich H-ZSM-5 samples. This is interpreted by a multi-stage reaction sequence, which involves the initial deoxygenation of the feed and the subsequent integration of the olefin intermediates into a reaction network. The results pave the way towards the achievement of a desired product distribution in the conversion of different oxygenates simply by the adaption of the Al content of H-ZSM-5
    corecore