10 research outputs found

    Spatio-temporal factors influencing the occurrence of Syngamus trachea within release pens in the South West of England

    Get PDF
    a b s t r a c t Syngamus trachea is a pathogenic tracheal nematode that causes syngamiasis in wild and game birds, especially when birds are managed at high densities. Despite its pathogenic nature, very little is known about its epidemiology and relationship with ambient temperature and humidity. The spatial and temporal modelling of disease was undertaken on two pheasant estates within the South West of England from April 2014 to August 2014. Significant differences between the mean numbers of eggs per gram of soil were identified between pens at both site 1 and site 2 but did not differ significantly between sites. Egg abundance was significantly associated with soil moisture content, with greater egg survival between years in pens with higher average volumetric soil moisture content. Previous years stocking density and pen age were also associated with greater egg survival between years with more eggs being recovered in pens with greater stocking densities, and pens that had been sited longer. The greatest model to explain the variation in the numbers of eggs per gram of soil per pen was a combination of soil moisture content, stocking density and pen age. Larval recovery differed significantly between sites. Larval abundance was significantly and positively associated with temperature and relative humidity at site 1. Similarly, temperature and humidity were also positively and significantly associated with larval abundance at site 2. Rainfall did not influence larval recovery at either site 1 or site 2. The model with the greatest ability to explain larval abundance at both sites, was a combination of temperature, humidity and rainfall. Infection status (positive faecal egg counts) was significantly and positively associated with larval abundance at both sites, but rainfall was only positively associated at site 1. Temperature and humidity were positively associated with infection status at site 2, but not at site 1. The present study highlights the influence of climatic variables on both egg survival and larval abundance, and could therefore be used to develop more targeted treatment strategies around periods of higher disease risk. The frequent use of release pens is a clear factor in the epidemiology of syngamiasis, and it is recommended that pens be rested and/or rotated in order to reduce infection pressure in subsequent flocks

    A chromatographic and immunoprofiling approach to optimising workflows for extraction of gluten proteins from flour

    Get PDF
    Ingestion of gluten proteins from wheat, and related prolamin proteins from barley, rye, and oats, can cause adverse reactions in individuals with coeliac disease and IgE-mediated allergies. As there is currently no cure for these conditions, patients must practice avoidance of gluten-containing foods. In order to support patients in making safe food choices, foods making a “gluten-free” claim must contain no more than 20 mg/Kg of gluten. Mass spectrometry methods have the potential to provide an alternative method for confirmatory analysis of gluten that is complementary to analysis currently undertaken by immunoassay. As part of the development of such methodology the effectiveness of two different extraction procedures was investigated using wholemeal wheat flour before and after defatting with water-saturated butan-1-ol. A single step extraction with 50 % (v/v) propan-2-ol containing 2 M urea and reducing agent (buffer 1) was compared with a two-step extraction using 60 % (v/v) aqueous ethanol (buffer 2) followed by re-extraction of the pellet using buffer 1, using either wheel mixing under ambient conditions (19 ◦C) or sonication at 60 ◦C. The procedures were compared based on total protein extraction efficiency and the composition of the extracts determined using a combination of HPLC, SDSPAGE and immunoblotting with a panel of four gluten-specific monoclonal antibodies. Defatting generally had a detrimental effect on extraction efficiency and sonication at 60 ◦C only improved extraction efficiency with buffer 2. Although the single-step and two-step procedures were equally effective at extracting protein from the samples, analysis of extracts showed that the two-step method gave a more complete extraction of gluten proteins. Future studies will compare the effectiveness of these procedures when applied in the sample workflows for mass spectrometry based methods for determination of gluten in food

    Symptoms and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Positivity in the General Population in the United Kingdom

    Get PDF
    BACKGROUND: “Classic” symptoms (cough, fever, loss of taste/smell) prompt severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing in the United Kingdom. Studies have assessed the ability of different symptoms to identify infection, but few have compared symptoms over time (reflecting variants) and by vaccination status. METHODS: Using the COVID-19 Infection Survey, sampling households across the United Kingdom, we compared symptoms in PCR-positives vs PCR-negatives, evaluating sensitivity of combinations of 12 symptoms (percentage symptomatic PCR-positives reporting specific symptoms) and tests per case (TPC) (PCR-positives or PCR-negatives reporting specific symptoms/ PCR-positives reporting specific symptoms). RESULTS: Between April 2020 and August 2021, 27 869 SARS-CoV-2 PCR-positive episodes occurred in 27 692 participants (median 42 years), of whom 13 427 (48%) self-reported symptoms (“symptomatic PCR-positives”). The comparator comprised 3 806 692 test-negative visits (457 215 participants); 130 612 (3%) self-reported symptoms (“symptomatic PCR-negatives”). Symptom reporting in PCR-positives varied by age, sex, and ethnicity, and over time, reflecting changes in prevalence of viral variants, incidental changes (eg, seasonal pathogens (with sore throat increasing in PCR-positives and PCR-negatives from April 2021), schools reopening) and vaccination rollout. After May 2021 when Delta emerged, headache and fever substantially increased in PCR-positives, but not PCR-negatives. Sensitivity of symptom-based detection increased from 74% using “classic” symptoms, to 81% adding fatigue/weakness, and 90% including all 8 additional symptoms. However, this increased TPC from 4.6 to 5.3 to 8.7. CONCLUSIONS: Expanded symptom combinations may provide modest benefits for sensitivity of PCR-based case detection, but this will vary between settings and over time, and increases tests/case. Large-scale changes to targeted PCR-testing approaches require careful evaluation given substantial resource and infrastructure implications

    Symptoms and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity in the general population in the United Kingdom

    Get PDF
    Background “Classic” symptoms (cough, fever, loss of taste/smell) prompt severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing in the United Kingdom. Studies have assessed the ability of different symptoms to identify infection, but few have compared symptoms over time (reflecting variants) and by vaccination status. Methods Using the COVID-19 Infection Survey, sampling households across the United Kingdom, we compared symptoms in PCR-positives vs PCR-negatives, evaluating sensitivity of combinations of 12 symptoms (percentage symptomatic PCR-positives reporting specific symptoms) and tests per case (TPC) (PCR-positives or PCR-negatives reporting specific symptoms/ PCR-positives reporting specific symptoms). Results Between April 2020 and August 2021, 27 869 SARS-CoV-2 PCR-positive episodes occurred in 27 692 participants (median 42 years), of whom 13 427 (48%) self-reported symptoms (“symptomatic PCR-positives”). The comparator comprised 3 806 692 test-negative visits (457 215 participants); 130 612 (3%) self-reported symptoms (“symptomatic PCR-negatives”). Symptom reporting in PCR-positives varied by age, sex, and ethnicity, and over time, reflecting changes in prevalence of viral variants, incidental changes (eg, seasonal pathogens (with sore throat increasing in PCR-positives and PCR-negatives from April 2021), schools reopening) and vaccination rollout. After May 2021 when Delta emerged, headache and fever substantially increased in PCR-positives, but not PCR-negatives. Sensitivity of symptom-based detection increased from 74% using “classic” symptoms, to 81% adding fatigue/weakness, and 90% including all 8 additional symptoms. However, this increased TPC from 4.6 to 5.3 to 8.7. Conclusions Expanded symptom combinations may provide modest benefits for sensitivity of PCR-based case detection, but this will vary between settings and over time, and increases tests/case. Large-scale changes to targeted PCR-testing approaches require careful evaluation given substantial resource and infrastructure implications

    Increased infections, but not viral burden, with a new SARS-CoV-2 variant

    No full text
    Background A new variant of SARS-CoV-2, B.1.1.7/VOC202012/01, was identified in the UK in December-2020. Direct estimates of its potential to enhance transmission are limited. Methods Nose and throat swabs from 28-September-2020 to 2-January-2021 in the UK’s nationally representative surveillance study were tested by RT-PCR for three genes (N, S and ORF1ab). Those positive only on ORF1ab+N, S-gene target failures (SGTF), are compatible with B.1.1.7/VOC202012/01. We investigated cycle threshold (Ct) values (a proxy for viral load), percentage of positives, population positivity and growth rates in SGTF vs non-SGTF positives. Results 15,166(0.98%) of 1,553,687 swabs were PCR-positive, 8,545(56%) with three genes detected and 3,531(23%) SGTF. SGTF comprised an increasing, and triple-gene positives a decreasing, percentage of infections from late-November in most UK regions/countries, e.g. from 15% to 38% to 81% over 1.5 months in London. SGTF Ct values correspondingly declined substantially to similar levels to triple-gene positives. Population-level SGTF positivity remained low (<0.25%) in all regions/countries until late-November, when marked increases with and without self-reported symptoms occurred in southern England (to 1.5-3%), despite stable rates of non-SGTF cases. SGTF positivity rates increased on average 6% more rapidly than rates of non-SGTF positives (95% CI 4-9%) supporting addition rather than replacement with B.1.1.7/VOC202012/01. Excess growth rates for SGTF vs non-SGTF positives were similar in those up to high school age (5% (1-8%)) and older individuals (6% (4-9%)). Conclusions Direct population-representative estimates show that the B.1.1.7/VOC202012/01 SARS-CoV-2 variant leads to higher infection rates, but does not seem particularly adapted to any age group

    Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom

    Get PDF
    The effectiveness of COVID-19 vaccination in preventing new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the general community is still unclear. Here, we used the Office for National Statistics COVID-19 Infection Survey—a large community-based survey of individuals living in randomly selected private households across the United Kingdom—to assess the effectiveness of the BNT162b2 (Pfizer–BioNTech) and ChAdOx1 nCoV-19 (Oxford–AstraZeneca; ChAdOx1) vaccines against any new SARS-CoV-2 PCR-positive tests, split according to self-reported symptoms, cycle threshold value (<30 versus ≥30; as a surrogate for viral load) and gene positivity pattern (compatible with B.1.1.7 or not). Using 1,945,071 real-time PCR results from nose and throat swabs taken from 383,812 participants between 1 December 2020 and 8 May 2021, we found that vaccination with the ChAdOx1 or BNT162b2 vaccines already reduced SARS-CoV-2 infections ≥21 d after the first dose (61% (95% confidence interval (CI) = 54–68%) versus 66% (95% CI = 60–71%), respectively), with greater reductions observed after a second dose (79% (95% CI = 65–88%) versus 80% (95% CI = 73–85%), respectively). The largest reductions were observed for symptomatic infections and/or infections with a higher viral burden. Overall, COVID-19 vaccination reduced the number of new SARS-CoV-2 infections, with the largest benefit received after two vaccinations and against symptomatic and high viral burden infections, and with no evidence of a difference between the BNT162b2 and ChAdOx1 vaccines

    Biological markers for climate change: Impact in sheep

    No full text
    This chapter is intended to provide an overview of previous studies into heat stress and markers that are associated with thermo-tolerance in sheep, as well as other ruminant species that may be considered models for biological processes in sheep. The chapter is divided into two major parts. The first part examines the roles of well-documented heat stress-related biological markers such as heat shock proteins and genes associated with favourable phenotypes such as coat colour and texture. The second part looks at research using methodologies such as microarray, transcriptomics and genomics that have been employed for the identification of novel genes or markers associated with traits of interest. Finally, the chapter concludes with a summary of the observed and expected impacts that climate change will have upon disease. Advances in our understanding of the physiological and biochemical challenges associated with heat stress in sheep and other ruminants, and utilizing this information to deliver increased thermotolerance, will be critical to the continued productivity of dairy, meat and fibre sectors in livestock globally
    corecore