40 research outputs found

    Management of lercanidipine overdose with hyperinsulinaemic euglycaemia therapy: case report

    Get PDF
    This case report describes the first reported overdose of the dihydropyridine calcium channel blocker (CCB) lercanidipine. A 49 yr old male presented to the Emergency Department 3 hrs after the ingestion of 560 mg of lercanidipine. In the department he had a witnessed seizure within 15 minutes of arrival attributed to the overdose. Following immediate recovery of consciousness after the seizure, he had refractory hypotension and bradycardia which failed to respond to fluid resuscitation, glucagon therapy, and intravenous calcium. He went on to require vasopressor support with noradrenaline and was treated with high dose insulin therapy which was successful in achieving cardiovascular stability. Vasopressor therapy was no longer required within one half life of lercanidipine, and the total stay on intensive care was one day before transfer to a ward

    N-Acylated and N-Alkylated 2-Aminobenzothiazoles Are Novel Agents That Suppress the Generation of Prostaglandin E2.

    Get PDF
    The quest for novel agents to regulate the generation of prostaglandin E2 (PGE2) is of high importance because this eicosanoid is a key player in inflammatory diseases. We synthesized a series of N-acylated and N-alkylated 2-aminobenzothiazoles and related heterocycles (benzoxazoles and benzimidazoles) and evaluated their ability to suppress the cytokine-stimulated generation of PGE2 in rat mesangial cells. 2-Aminobenzothiazoles, either acylated by the 3-(naphthalen-2-yl)propanoyl moiety (GK510) or N-alkylated by a chain carrying a naphthalene (GK543) or a phenyl moiety (GK562) at a distance of three carbon atoms, stand out in inhibiting PGE2 generation, with EC50 values ranging from 118 nM to 177 nM. Both GK510 and GK543 exhibit in vivo anti-inflammatory activity greater than that of indomethacin. Thus, N-acylated or N-alkylated 2-aminobenzothiazoles are novel leads for the regulation of PGE2 formation

    Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–4

    Get PDF
    Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes is a series of Editorials, which is published on a biannual basis by the Editorial Board of the Medicinal Chemistry section of the journal Molecules. In these Editorials, we highlight in brief reports (of about one hundred words) a number of recently published articles that describe crucial findings, such as the discovery of novel drug targets and mechanisms of action, or novel classes of drugs, which may inspire future medicinal chemistry endeavours devoted to addressing prime unmet medical needs

    Modulation of pain perception by transcranial magnetic stimulation of left prefrontal cortex

    Get PDF
    Evidence by functional imaging studies suggests the role of left dorsolateral prefrontal cortex (DLPFC) in the inhibitory control of nociceptive transmission system. Repetitive transcranial magnetic stimulation (rTMS) is able to modulate pain response to capsaicin. In the present study, we evaluated the effect of DLPFC activation (through rTMS) on nociceptive control in a model of capsaicin-induced pain. The study was performed on healthy subjects that underwent capsaicin application on right or left hand. Subjects judged the pain induced by capsaicin through a 0–100 VAS scale before and after 5 Hz rTMS over left and right DLPFC at 10 or 20 min after capsaicin application in two separate groups (8 subjects each). Left DLPFC-rTMS delivered either at 10 and 20 min after capsaicin application significantly decreased spontaneous pain in both hands. Right DLPFC rTMS showed no significant effect on pain measures. According to these results, stimulation of left DLPFC seems able to exert a bilateral control on pain system, supporting the critical antinociceptive role of such area. This could open new perspectives to non-invasive brain stimulation protocols of alternative target area for pain treatment

    Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast

    Get PDF
    BACKGROUND: BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad of secondary metabolites, some of which are beneficial for humans either as therapeutics or as specialty chemicals such as flavors and fragrances. The production of pharmaceutical, nutraceutical and commodity chemicals using engineered microbes is an alternative, green route to energy-intensive chemical syntheses that consume petroleum-based precursors. However, identification of appropriate enzymes and validation of their functional expression in heterologous hosts is a prerequisite for the design and implementation of metabolic pathways in microbes for the synthesis of such target chemicals. RESULTS: For the synthesis of valuable metabolites in the yeast Saccharomyces cerevisiae, we selected BAHD acyltransferases based on their preferred donor and acceptor substrates. In particular, BAHDs that use hydroxycinnamoyl-CoAs and/or benzoyl-CoA as donors were targeted because a large number of molecules beneficial to humans belong to this family of hydroxycinnamate and benzoate conjugates. The selected BAHD coding sequences were synthesized and cloned individually on a vector containing the Arabidopsis gene At4CL5, which encodes a promiscuous 4-coumarate:CoA ligase active on hydroxycinnamates and benzoates. The various S. cerevisiae strains obtained for co-expression of At4CL5 with the different BAHDs effectively produced a wide array of valuable hydroxycinnamate and benzoate conjugates upon addition of adequate combinations of donors and acceptor molecules. In particular, we report here for the first time the production in yeast of rosmarinic acid and its derivatives, quinate hydroxycinnamate esters such as chlorogenic acid, and glycerol hydroxycinnamate esters. Similarly, we achieved for the first time the microbial production of polyamine hydroxycinnamate amides; monolignol, malate and fatty alcohol hydroxycinnamate esters; tropane alkaloids; and benzoate/caffeate alcohol esters. In some instances, the additional expression of Flavobacterium johnsoniae tyrosine ammonia-lyase (FjTAL) allowed the synthesis of p-coumarate conjugates and eliminated the need to supplement the culture media with 4-hydroxycinnamate. CONCLUSION: We demonstrate in this study the effectiveness of expressing members of the plant BAHD acyltransferase family in yeast for the synthesis of numerous valuable hydroxycinnamate and benzoate conjugates

    General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multi-centre observational study

    Get PDF
    There are no current descriptions of general anaesthesia characteristics for obstetric surgery, despite recent changes to patient baseline characteristics and airway management guidelines. This analysis of data from the direct reporting of awareness in maternity patients' (DREAMY) study of accidental awareness during obstetric anaesthesia aimed to describe practice for obstetric general anaesthesia in England and compare with earlier surveys and best-practice recommendations. Consenting patients who received general anaesthesia for obstetric surgery in 72 hospitals from May 2017 to August 2018 were included. Baseline characteristics, airway management, anaesthetic techniques and major complications were collected. Descriptive analysis, binary logistic regression modelling and comparisons with earlier data were conducted. Data were collected from 3117 procedures, including 2554 (81.9%) caesarean deliveries. Thiopental was the induction drug in 1649 (52.9%) patients, compared with propofol in 1419 (45.5%). Suxamethonium was the neuromuscular blocking drug for tracheal intubation in 2631 (86.1%), compared with rocuronium in 367 (11.8%). Difficult tracheal intubation was reported in 1 in 19 (95%CI 1 in 16-22) and failed intubation in 1 in 312 (95%CI 1 in 169-667). Obese patients were over-represented compared with national baselines and associated with difficult, but not failed intubation. There was more evidence of change in practice for induction drugs (increased use of propofol) than neuromuscular blocking drugs (suxamethonium remains the most popular). There was evidence of improvement in practice, with increased monitoring and reversal of neuromuscular blockade (although this remains suboptimal). Despite a high risk of difficult intubation in this population, videolaryngoscopy was rarely used (1.9%)

    Ethyl (E)-(3-(4-((4-bromobenzyl)oxy)phenyl)acryloyl)glycinate

    No full text
    In an attempt to develop new potent anti-inflammatory agents, a cinnamic -amino acid hybrid molecule was synthesized and in silico drug-likeness, in vitro COX-2 inhibition, and pharmacokinetic properties were studied. The results showed high cyclooxygenase inhibitory activity (IC50 = 6 µM) and favorable pharmacokinetic properties, being orally bioavailable according to Lipinski’s rule of five, making this compound a possible lead to design and develop potent COX inhibitors. The new compound, in comparison with its cinnamic acid precursor (E)-(3-(4-((4-bromobenzyl)oxy)phenyl)acrylic acid, showed improved biological activities. Compound ethyl (E)-(3-(4-((4-bromobenzyl)oxy)phenyl)acryloyl)glycinate can be used as a lead for the synthesis of more effective hybrids
    corecore