14,937 research outputs found

    Comment on: "Transverse-Mass MM_\perp Dependence of Dilepton Emission from Preequilibrium and Quark-Gluon Plasma in High Energy Nucleus-Nucleus Collisions"

    Full text link
    In a recent Letter, Geiger presents calculations of the dilepton emission from the early stage of ultrarelativistic heavy ion collisions using the parton cascade model (PCM). He shows that the MM_\perp scaling is not observed. In this Comment, we point out that this is largely due to a defect in the PCM.Comment: 3 pages, LaTex, LBL-3526

    Comment on Transverse Mass Dependence of Partonic Dilepton Production in Ultra-Relativistic Heavy Ion Collisions

    Full text link
    Comment on scale breaking effects in dilepton emission from partons during the early stage of ultra-relativistic heavy ion collisionsComment: 6 pages, RevTe

    Quarkonium Mass Splitting Revisited: Effects of Closed Mesonic Channels

    Get PDF
    Modifications of the mass spectrum the quarkonium induced by its virtual dissociation into a pair of heavy mesons is considered. Coupling between quark and mesonic channels results in noticeable corrections to spin-dependent mass splitting. In particular, the observable hierarchy of mass splittings in the χc,χb\chi_c, \chi_b and χb\chi'_b multiplets is reproduced.Comment: 9 pages, plain LaTe

    Fibre DFB lasers in a 4x10 Gbit/s WDM link with a single sinc-sampled fibre grating dispersion compensator

    No full text
    WDM transmission and dispersion compensation at 40 Gbit/s over 200 km standard fibre is demonstrated on a 100 GHz grid using four high power single-polarisation single-sided output DFB fibre laser based transmitters and a single 4 channel WDM chirped fibre Bragg grating dispersion compensator

    Importance of appropriate selection environments for breeding maize adapted to organic farming systems

    Get PDF
    Organic farming systems, characterized by special attention to soil fertility, recycling techniques and low external inputs, gained increased significance in recent years. As a consequence, there is a growing demand for varieties adapted to organic and/or low input farming. The objectives of the present study were to (i) compare the testcross performance of segregating maize (Zea mays) populations under established organic (OF) and conventional farming (CF) systems, (ii) determine quantitative genetic parameters decisive for the selection response under OF vs CF conditions, and (iii) draw conclusions for breeding new varieties optimally adapted to OF. Testcross performance of four different material groups of preselected lines (90 lines per group) derived from early European breeding material was assessed under OF and CF in three different geographic regions in Germany in 2008. Grain yields under OF were 3 to 18% lower than under CF in the individual experiments depending on the test region and, to a lesser extent, on the genetic material. On average, grain dry matter yield under OF was 1077 g m-2 compared to 1186 g m-2 under CF. Phenotypic correlations between OF and CF were small or moderate for grain yield in each of the four material groups (0.22 to 0.45), while strong and highly significant correlations were found for dry matter content (0.89 to 0.94). Genotypes with top grain yields under OF often did not show this superiority under CF and vice versa. Despite considerable heterogeneity of the OF test sites, the heritability for grain yield was in the same order of magnitude under OF and CF. It is concluded that test sites managed by OF are indispensable for making maximum progress in developing maize varieties for these conditions

    Stochastic Yield Catastrophes and Robustness in Self-Assembly

    Get PDF
    A guiding principle in self-assembly is that, for high production yield, nucleation of structures must be significantly slower than their growth. However, details of the mechanism that impedes nucleation are broadly considered irrelevant. Here, we analyze self-assembly into finite-sized target structures employing mathematical modeling. We investigate two key scenarios to delay nucleation: (i) by introducing a slow activation step for the assembling constituents and, (ii) by decreasing the dimerization rate. These scenarios have widely different characteristics. While the dimerization scenario exhibits robust behavior, the activation scenario is highly sensitive to demographic fluctuations. These demographic fluctuations ultimately disfavor growth compared to nucleation and can suppress yield completely. The occurrence of this stochastic yield catastrophe does not depend on model details but is generic as soon as number fluctuations between constituents are taken into account. On a broader perspective, our results reveal that stochasticity is an important limiting factor for self-assembly and that the specific implementation of the nucleation process plays a significant role in determining the yield

    Space station integrated wall design and penetration damage control. Task 3: Theoretical analysis of penetration mechanics

    Get PDF
    The efforts to provide a penetration code called PEN4 version 10 is documented for calculation of projectile and target states for the impact of 2024-T3 aluminum, R sub B 90 1018 steel projectiles and icy meteoroids onto 2024-T3 aluminum plates at impact velocities from 0 to 16 km/s. PEN4 determines whether a plate is perforated by calculating the state of fragmentation of projectile and first plate. Depth of penetration into the second to n sup th plate by fragments resulting from first plate perforation is determined by multiple cratering. The results from applications are given

    Flash of photons from the early stage of heavy-ion collisions

    Get PDF
    The dynamics of partonic cascades may be an important aspect for particle production in relativistic collisions of nuclei at CERN SPS and BNL RHIC energies. Within the Parton-Cascade Model, we estimate the production of single photons from such cascades due to scattering of quarks and gluons q g -> q gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter QED branching process plays the dominant role for photon production, similarly as the QCD branchings q -> q g and g -> g g play a crucial role for parton multiplication. We conclude therefore that photons accompanying the parton cascade evolution during the early stage of heavy-ion collisions shed light on the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure

    Gauge Consistent Wilson Renormalization Group II: Non-Abelian Case

    Get PDF
    We give a wilsonian formulation of non-abelian gauge theories explicitly consistent with axial gauge Ward identitities. The issues of unitarity and dependence on the quantization direction are carefully investigated. A wilsonian computation of the one-loop QCD beta function is performed.Comment: 34 pages, 1 eps figure, latex2e. Minor changes, version to appear in Int. J. Mod. Phy

    Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach

    Get PDF
    We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 - 3 depending on the hadron species.Comment: 10 pages, 4 eps figures include
    corecore