4,849 research outputs found

    The Circumstellar Structure and Excitation Effects around the Massive Protostar Cepheus A HW 2

    Full text link
    We report SMA 335 GHz continuum observations with angular resolution of ~0.''3, together with VLA ammonia observations with ~1'' resolution toward Cep A HW 2. We find that the flattened disk structure of the dust emission observed by Patel et al. is preserved at the 0.''3 scale, showing an elongated structure of ~$0.''6 size (450 AU) peaking on HW 2. In addition, two ammonia cores are observed, one associated with a hot-core previously reported, and an elongated core with a double peak separated by ~1.''3 and with signs of heating at the inner edges of the gas facing HW 2. The double-peaked ammonia structure, as well as the double-peaked CH3CN structure reported previously (and proposed to be two independent hot-cores), surround both the dust emission as well as the double-peaked SO2 disk structure found by Jimenez-Serra et al. All these results argue against the interpretation of the elongated dust-gas structure as due to a chance-superposition of different cores; instead, they imply that it is physically related to the central massive object within a disk-protostar-jet system.Comment: 12 pages, 3 figures; accepted for publication in the Astrophysical Journa

    Deformed Density Matrix and Generalized Uncertainty Relation in Thermodynamics

    Get PDF
    A generalization of the thermodynamic uncertainty relations is proposed. It is done by introducing of an additional term proportional to the interior energy into the standard thermodynamic uncertainty relation that leads to existence of the lower limit of inverse temperature. The authors are of the opinion that the approach proposed may lead to proof of these relations. To this end, the statistical mechanics deformation at Planck scale. The statistical mechanics deformation is constructed by analogy to the earlier quantum mechanical results. As previously, the primary object is a density matrix, but now the statistical one. The obtained deformed object is referred to as a statistical density pro-matrix. This object is explicitly described, and it is demonstrated that there is a complete analogy in the construction and properties of quantum mechanics and statistical density matrices at Plank scale (i.e. density pro-matrices). It is shown that an ordinary statistical density matrix occurs in the low-temperature limit at temperatures much lower than the Plank's. The associated deformation of a canonical Gibbs distribution is given explicitly.Comment: 15 pages,no figure

    Hilbert space of wormholes

    Get PDF
    Wormhole boundary conditions for the Wheeler--DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert space structure, the inner product being naturally induced by the minisuperspace metric, in which the Wheeler--DeWitt operator is essentially self--adjoint. This provides us with a kind of probabilistic interpretation. In particular, giant wormholes will give extremely small contributions to any wormhole state. We also study the whole spectrum of the Wheeler--DeWitt operator and its role in the calculation of Green's functions and effective low energy interactions.Comment: 23 pages, 2 figures available upon request, REVTE

    Exact bounds for distributed graph colouring

    Full text link
    We prove exact bounds on the time complexity of distributed graph colouring. If we are given a directed path that is properly coloured with nn colours, by prior work it is known that we can find a proper 3-colouring in 12log(n)±O(1)\frac{1}{2} \log^*(n) \pm O(1) communication rounds. We close the gap between upper and lower bounds: we show that for infinitely many nn the time complexity is precisely 12logn\frac{1}{2} \log^* n communication rounds.Comment: 16 pages, 3 figure

    Is there a problem with quantum wormhole states in N=1 Supergravity?

    Get PDF
    The issue concerning the existence of wormhole states in locally supersymmetric minisuperspace models with matter is addressed. Wormhole states are apparently absent in models obtained from the more general theory of N=1 supergravity with supermatter. A Hartle-Hawking type solution can be found, even though some terms (which are scalar field dependent) cannot be determined in a satisfactory way. A possible cause is investigated here. As far as the wormhole situation is concerned, we argue here that the type of Lagrange multipliers and fermionic derivative ordering used can make a difference. A proposal is made for supersymmetric quantum wormholes to also be invested with a Hilbert space structure, associated with a maximal analytical extension of the corresponding minisuperspace.is concerned, we argue here that the type of Lagrange multipliers and fermionic derivative ordering used can make a difference. A proposal is made for supersymmetric quantum wormholes to also be invested with a Hilbert space structure, associated with a maximal analytical extension of the corresponding minisuperspace.Comment: 22 pages, TeX (some font problems may occur, just press Return), Based on a essay submitted to the 1995 ravity Research Foundation Awards, accepted in G.R.

    Ultra-broadband photon pair preparation by spontaneous four wave mixing in dispersion-engineered optical fiber

    Full text link
    We present a study of the spectral properties of photon pairs generated through the process of spontaneous four wave mixing (SFWM) in single mode fiber. Our analysis assumes narrowband pumps, which are allowed to be frequency-degenerate or non-degenerate. Based on this analysis, we derive conditions on the pump frequencies and on the fiber dispersion parameters which guarantee the generation of ultra-broadband photon pairs. Such photon pairs are characterized by: i) a very large degree of entanglement, and ii) a very high degree of temporal synchronization between the signal and idler photons. Through a numerical exercise, we find that the use of photonic crystal fiber (PCF) facilitates the fulfilment of the conditions for ultra-broadband photon pair generation; in particular, the spectral region in which emission occurs can be adjusted to particular needs through an appropriate choice of the PCF parameters. In addition, we present a novel quantum interference effect, resulting from indistinguishable pathways to the same outcome, which can occur when pumping a SFWM source with multiple spectral lines.Comment: 15 pages, 10 figures. To be published in Phys. Rev.

    Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins.

    Get PDF
    Background - Bacillus thuringiensis Cry toxins are used worldwide in the control of different insect pests important in agriculture or in human health. The Cry proteins are pore-forming toxins that affect the midgut cell of target insects. It was shown that non-toxic Cry1Ab helix a-4 mutants had a dominant negative (DN) phenotype inhibiting the toxicity of wildtype Cry1Ab when used in equimolar or sub-stoichiometric ratios (1:1, 0.5:1, mutant:wt) indicating that oligomer formation is a key step in toxicity of Cry toxins. Methodology/Principal Findings - The DN Cry1Ab-D136N/T143D mutant that is able to block toxicity of Cry1Ab toxin, was used to analyze its capacity to block the activity against Manduca sexta larvae of other Cry1 toxins, such as Cry1Aa, Cry1Ac, Cry1Ca, Cry1Da, Cry1Ea and Cry1Fa. Cry1Ab-DN mutant inhibited toxicity of Cry1Aa, Cry1Ac and Cry1Fa. In addition, we isolated mutants in helix a-4 of Cry4Ba and Cry11Aa, and demonstrate that Cry4Ba-E159K and Cry11Aa-V142D are inactive and completely block the toxicity against Aedes aegypti of both wildtype toxins, when used at sub-stoichiometric ratios, confirming a DN phenotype. As controls we analyzed Cry1Ab-R99A or Cry11Aa-E97A mutants that are located in helix a-3 and are affected in toxin oligomerization. These mutants do not show a DN phenotype but were able to block toxicity when used in 10:1 or 100:1 ratios (mutant:wt) probably by competition of binding with toxin receptors. Conclusions/Significance - We show that DN phenotype can be observed among different Cry toxins suggesting that may interact in vivo forming hetero-oligomers. The DN phenotype cannot be observed in mutants affected in oligomerization, suggesting that this step is important to inhibit toxicity of other toxin

    CO and CH3OH observations of the BHR71 outflows with APEX

    Get PDF
    Context : Highly-collimated outflows are believed to be the earliest stage in outflow evolution, so their study is essential for understanding the processes driving outflows. The BHR71 Bok globule is known to harbour such a highly-collimated outflow, which is powered by a protostar belonging to a protobinary system. Aims : We aimed at investigating the interaction of collimated outflows with the ambient molecular cloud by using molecular tracers. Methods : We mapped the BHR71 highly-collimated outflow in CO(3-2) with the APEX telescope, and observed several bright points of the outflow in the molecular transitions CO(4-3), 13CO(3-2), C18O(3-2), and CH3OH(7-6). We use an LVG code to characterise the temperature enhancements in these regions. Results : In our CO(3-2) map, the second outflow driven by IRS2, which is the second source of the binary system, is completely revealed and shown to be bipolar. We also measure temperature enhancements in the lobes. The CO and methanol LVG modelling points to temperatures between 30 and 50K in the IRS1 outflow, while the IRS2 outflow seems to be warmer (up to 300K).Comment: 4 pages, 5 Figures, accepted by A&A Letters, to appear in the APEX First results special issu

    Fair and optimistic quantum contract signing

    Full text link
    We present a fair and optimistic quantum contract signing protocol between two clients that requires no communication with the third trusted party during the exchange phase. We discuss its fairness and show that it is possible to design such a protocol for which the probability of a dishonest client to cheat becomes negligible, and scales as N^{-1/2}, where N is the number of messages exchanged between the clients. Our protocol is not based on the exchange of signed messages: its fairness is based on the laws of quantum mechanics. Thus, it is abuse-free, and the clients do not have to generate new keys for each message during the Exchange phase. We discuss a real-life scenario when the measurement errors and qubit state corruption due to noisy channels occur and argue that for real, good enough measurement apparatus and transmission channels, our protocol would still be fair. Our protocol could be implemented by today's technology, as it requires in essence the same type of apparatus as the one needed for BB84 cryptographic protocol. Finally, we briefly discuss two alternative versions of the protocol, one that uses only two states (based on B92 protocol) and the other that uses entangled pairs, and show that it is possible to generalize our protocol to an arbitrary number of clients.Comment: 11 pages, 2 figure

    Quantum Electromagnetic Wormholes and Geometrical Description of the Electric Charge

    Get PDF
    I present and discuss a class of solutions of the Wheeler-de Witt equation describing wormholes generated by coupling of gravity to the electromagnetic field for Kantowski-Sachs and Bianchi I spacetimes. Since the electric charge can be viewed as electric lines of force trapped in a finite region of spacetime, these solutions can be interpreted as the quantum corresponding of the Ein\-stein\--Ro\-sen\--Mis\-ner\--Whee\-ler electromagnetic geon.Comment: 13 pages, PLAIN TEX, Report No: SISSA 92/94/A (to appear in Phys. Rev. D15
    corecore