242 research outputs found

    Exploring Interleukin 21 and Its Role in Humoral Immunity in the Mouse Model of Influenza Infection

    Get PDF
    In summary, this study will be focused on Il-21 and its implications in the antibody response in influenza. The isotype classes primarily involved in this process will also be examined. This will be accomplished by looking at the serum of mice and analyzing the present influenza specific antibodies using ELISA. Another goal was to optimize the ELISA in order to make it sensitive enough to catch small differences in the results. This topic is important due to its implications for improving influenza vaccinations and preventions as current vaccines are not 100% effective. Influenza contributes to significant disease and death around the world every year and each piece of this puzzle is significant in order for the scientific community to be able to eventually make strides to improve the burden of this disease

    Systems biologists seek fuller integration of systems biology approaches in new cancer research programs

    Get PDF
    Systems biology takes an interdisciplinary approach to the systematic study of complex interactions in biological systems. This approach seeks to decipher the emergent behaviors of complex systems rather than focusing only on their constituent properties. As an increasing number of examples illustrate the value of systems biology approaches to understand the initiation, progression, and treatment of cancer, systems biologists from across Europe and the United States hope for changes in the way their field is currently perceived among cancer researchers. In a recent EU-US workshop, supported by the European Commission, the German Federal Ministry for Education and Research, and the National Cancer Institute of the NIH, the participants discussed the strengths, weaknesses, hurdles, and opportunities in cancer systems biology

    Recent translational research: Oncogene discovery by insertional mutagenesis gets a new boost

    Get PDF
    Knowledge of the genes and genetic pathways involved in onco-genesis is essential if we are to identify novel targets for cancer therapy. Insertional mutagenesis in mouse models is among the most efficient tools to detect novel cancer genes. Retrovirus-mediated insertional mutagenesis received a tremendous boost by the availability of the mouse genome sequence and new PCR methods. Application of such advances were limited to lympho-magenesis but are now also being applied to mammary tumourigenesis. Novel transposons that allow insertional muta-genesis studies to be conducted in tumors of any mouse tissue may give cancer gene discovery a further boost

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression

    Notch signaling as a therapeutic target for breast cancer treatment?

    Get PDF
    Aberrant Notch signaling can induce mammary gland carcinoma in transgenic mice, and high expressions of Notch receptors and ligands have been linked to poor clinical outcomes in human patients with breast cancer. This suggests that inhibition of Notch signaling may be beneficial for breast cancer treatment. In this review, we critically evaluate the evidence that supports or challenges the hypothesis that inhibition of Notch signaling would be advantageous in breast cancer management. We find that there are many remaining uncertainties that must be addressed experimentally if we are to exploit inhibition of Notch signaling as a treatment approach in breast cancer. Nonetheless, Notch inhibition, in combination with other therapies, is a promising avenue for future management of breast cancer. Furthermore, since aberrant Notch4 activity can induce mammary gland carcinoma in the absence of RBPjÎş, a better understanding of the components of RBPjÎş-independent oncogenic Notch signaling pathways and their contribution to Notch-induced tumorigenesis would facilitate the deployment of Notch inhibition strategies for effective treatment of breast cancer

    Tyrosine kinase signalling in breast cancer: Fibroblast growth factors and their receptors

    Get PDF
    The fibroblast growth factors [Fgfs (murine), FGFs (human)] constitute a large family of ligands that signal through a class of cell-surface tyrosine kinase receptors. Fgf signalling has been associated in vitro with cellular differentiation as well as mitogenic and motogenic responses. In vivo, Fgfs are critical for animal development, and some have potent angiogenic properties. Several Fgfs have been identified as oncogenes in murine mammary cancer, where their deregulation is associated with proviral insertions of the mouse mammary tumour virus (MMTV). Thus, in some mammary tumours of MMTV-infected mouse strains, integration of viral genomic DNA into the somatic DNA of mammary epithelial cells was found to have caused the inappropriate expression of members of this family of growth factors. Although examination of human breast cancers has shown an altered expression of FGFs or of their receptors in some tumours, their role in the causation of breast disease is unclear and remains controversial
    • …
    corecore