2,165 research outputs found
Disaster scenario simulation of the 2010 cloudburst in Leh, Ladakh, India
Leh district in the Ladakh region of north-western India experienced a disaster when a cloudburst generated debris flows, killed hundreds of people, destroyed houses, and damaged the hospital, communication infrastructure, the bus station, and vital roads. A simulation of the Leh cloudburst disaster analysed the disaster itself, disaster risk reduction plans in the region, gaps in existing response mechanisms and reducing hazard impacts in the future. The participant group comprised academic researchers and industry experts in natural hazards, social vulnerability, engineering, historical and social sciences, education, journalism, disaster management and disaster risk reduction. Many of the participants had extensive local knowledge of Ladakh or comparable neighbouring Himalayan regions. Following the disaster, Leh Autonomous Hill Development Council (LAHDC), produced a District Disaster Management Plan (DDMP), which addressed many of the gaps identified in the simulation. Most importantly, the document outlined a civil protection mechanism to respond to future hazardous events. This was utilised to assess future disaster response in the simulation scenario. From analysis of the scenario simulation, the role of the army was found to be key in minimizing the impact of the 2010 disaster, although in the future, the army may coordinate with the civil protection body as set out in the DDMP. Participants identified the lack of a local formalized civil protection plan as a major vulnerability, and the most vulnerable populations as the migrant communities. The group also discussed evidence of resilience among the population such as the role of monasteries and spirituality in psychological recovery and the impact of the initial local response. From broader discussion of the simulation scenario, it was possible to identify aspects of resilience for further study in a wider research project, such as identifying hazardous slopes from satellite mapping, informing the fieldwork program, designing social questionnaires to understand risk perception and formulating questions to guide focus-group discussions on community resilience
A Multi-site Resting State fMRI Study on the Amplitude of Low Frequency Fluctuations in Schizophrenia
Background: This multi-site study compares resting state fMRI amplitude of low frequency fluctuations (ALFF) and fractional ALFF (fALFF) between patients with schizophrenia (SZ) and healthy controls (HC). Methods: Eyes-closed resting fMRI scans (5:38 min; n = 306, 146 SZ) were collected from 6 Siemens 3T scanners and one GE 3T scanner. Imaging data were pre-processed using an SPM pipeline. Power in the low frequency band (0.01–0.08 Hz) was calculated both for the original pre-processed data as well as for the pre-processed data after regressing out the six rigid-body motion parameters, mean white matter (WM) and cerebral spinal fluid (CSF) signals. Both original and regressed ALFF and fALFF measures were modeled with site, diagnosis, age, and diagnosis × age interactions. Results: Regressing out motion and non-gray matter signals significantly decreased fALFF throughout the brain as well as ALFF in the cortical edge, but significantly increased ALFF in subcortical regions. Regression had little effect on site, age, and diagnosis effects on ALFF, other than to reduce diagnosis effects in subcortical regions. There were significant effects of site across the brain in all the analyses, largely due to vendor differences. HC showed greater ALFF in the occipital, posterior parietal, and superior temporal lobe, while SZ showed smaller clusters of greater ALFF in the frontal and temporal/insular regions as well as in the caudate, putamen, and hippocampus. HC showed greater fALFF compared with SZ in all regions, though subcortical differences were only significant for original fALFF. Conclusions: SZ show greater eyes-closed resting state low frequency power in frontal cortex, and less power in posterior lobes than do HC; fALFF, however, is lower in SZ than HC throughout the cortex. These effects are robust to multi-site variability. Regressing out physiological noise signals significantly affects both total and fALFF measures, but does not affect the pattern of case/control differences
Predicting Infectious ComplicatioNs in Children with Cancer : an external validation study
Background:The aim of this study was to validate the 'Predicting Infectious ComplicatioNs in Children with Cancer' (PICNICC) clinical decision rule (CDR) that predicts microbiologically documented infection (MDI) in children with cancer and fever and neutropenia (FN). We also investigated costs associated with current FN management strategies in Australia.Methods:Demographic, episode, outcome and cost data were retrospectively collected on 650 episodes of FN. We assessed the discrimination, calibration, sensitivity and specificity of the PICNICC CDR in our cohort compared with the derivation data set.Results:Using the original variable coefficients, the CDR performed poorly. After recalibration the PICNICC CDR had an area under the receiver operating characteristic (AUC-ROC) curve of 0.638 (95% CI 0.590-0.685) and calibration slope of 0.24. The sensitivity, specificity, positive predictive value and negative predictive value of the PICNICC CDR at presentation was 78.4%, 39.8%, 28.6% and 85.7%, respectively. For bacteraemia, the sensitivity improved to 85.2% and AUC-ROC to 0.71. Application at day 2, taking into consideration the proportion of MDI known (43%), further improved the sensitivity to 87.7%. Length of stay is the main contributor to cost of FN treatment, with an average cost per day of AUD 2183 in the low-risk group.Conclusions:For prediction of any MDI, the PICNICC rule did not perform as well at presentation in our cohort as compared with the derivation study. However, for bacteraemia, the predictive ability was similar to that of the derivation study, highlighting the importance of recalibration using local data. Performance also improved after an overnight period of observation. Implementation of a low-risk pathway, using the PICNICC CDR after a short period of inpatient observation, is likely to be safe and has the potential to reduce health-care expenditure
The quest for universal access to effective malaria treatment: how can the AMFm contribute?
Access to quality assured artemisinin-based combination therapy (ACT) has remained very low in most malaria endemic countries. A number of reasons, including unaffordable prices, have contributed to the low accessibility to these life-saving medicines. The Affordable Medicines Facility-Malaria (AMFm) is a mechanism to increase access to quality assured ACT. The AMFm will use price signals and a combination of public and private sector channels to achieve multiple public health objectives: replacing older and increasingly ineffective anti-malarial medicines, such as chloroquine and sulphadoxine-pyrimethamine with ACT, displacing oral artemisinin monotherapies from the market, and prolonging the lifespan of ACT by reducing the likelihood of resistance to artemisinin
Biochemical Discrimination between Selenium and Sulfur 1: A Single Residue Provides Selenium Specificity to Human Selenocysteine Lyase
Selenium and sulfur are two closely related basic elements utilized in nature for a vast array of biochemical reactions. While toxic at higher concentrations, selenium is an essential trace element incorporated into selenoproteins as selenocysteine (Sec), the selenium analogue of cysteine (Cys). Sec lyases (SCLs) and Cys desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys and generally act on both substrates. In contrast, human SCL (hSCL) is specific for Sec although the only difference between Sec and Cys is the identity of a single atom. The chemical basis of this selenium-over-sulfur discrimination is not understood. Here we describe the X-ray crystal structure of hSCL and identify Asp146 as the key residue that provides the Sec specificity. A D146K variant resulted in loss of Sec specificity and appearance of CD activity. A dynamic active site segment also provides the structural prerequisites for direct product delivery of selenide produced by Sec cleavage, thus avoiding release of reactive selenide species into the cell. We thus here define a molecular determinant for enzymatic specificity discrimination between a single selenium versus sulfur atom, elements with very similar chemical properties. Our findings thus provide molecular insights into a key level of control in human selenium and selenoprotein turnover and metabolism
Display of native antigen on cDC1 that have spatial access to both T and B cells underlies efficient humoral vaccination
Follicular dendritic cells and macrophages have been strongly implicated in presentation of native Ag to B cells. This property has also occasionally been attributed to conventional dendritic cells (cDC) but is generally masked by their essential role in T cell priming. cDC can be divided into two main subsets, cDC1 and cDC2, with recent evidence suggesting that cDC2 are primarily responsible for initiating B cell and T follicular helper responses. This conclusion is, however, at odds with evidence that targeting Ag to Clec9A (DNGR1), expressed by cDC1, induces strong humoral responses. In this study, we reveal that murine cDC1 interact extensively with B cells at the border of B cell follicles and, when Ag is targeted to Clec9A, can display native Ag for B cell activation. This leads to efficient induction of humoral immunity. Our findings indicate that surface display of native Ag on cDC with access to both T and B cells is key to efficient humoral vaccination
Upper atmospheres and ionospheres of planets and satellites
The upper atmospheres of the planets and their satellites are more directly
exposed to sunlight and solar wind particles than the surface or the deeper
atmospheric layers. At the altitudes where the associated energy is deposited,
the atmospheres may become ionized and are referred to as ionospheres. The
details of the photon and particle interactions with the upper atmosphere
depend strongly on whether the object has anintrinsic magnetic field that may
channel the precipitating particles into the atmosphere or drive the
atmospheric gas out to space. Important implications of these interactions
include atmospheric loss over diverse timescales, photochemistry and the
formation of aerosols, which affect the evolution, composition and remote
sensing of the planets (satellites). The upper atmosphere connects the planet
(satellite) bulk composition to the near-planet (-satellite) environment.
Understanding the relevant physics and chemistry provides insight to the past
and future conditions of these objects, which is critical for understanding
their evolution. This chapter introduces the basic concepts of upper
atmospheres and ionospheres in our solar system, and discusses aspects of their
neutral and ion composition, wind dynamics and energy budget. This knowledge is
key to putting in context the observations of upper atmospheres and haze on
exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie
Home-based care of low-risk febrile neutropenia in children-an implementation study in a tertiary paediatric hospital
BACKGROUND: Home-based management of low-risk febrile neutropenia (FN) is safe, improves quality of life and reduces healthcare expenditure. A formal low-risk paediatric program has not been implemented in Australia. We aimed to describe the implementation process and evaluate the clinical impact. METHOD: This prospective study incorporated three phases: implementation, intervention and evaluation. A low-risk FN implementation toolkit was developed, including a care-pathway, patient information, home-based assessment and educational resources. The program had executive-level endorsement, a multidisciplinary committee and a nurse specialist. Children with cancer and low-risk FN were eligible to be transferred home with a nurse visiting daily after an overnight period of observation for intravenous antibiotics. Low-risk patients were identified using a validated decision rule, and suitability for home-based care was determined using disease, chemotherapy and patient-level criteria. Plan-Do-Study-Act methodology was used to evaluate clinical impact and safety. RESULTS: Over 18 months, 292 children with FN were screened: 132 (45%) were low-risk and 63 (22%) were transferred to home-based care. Compared with pre-implementation there was a significant reduction in in-hospital median LOS (4.0 to 1.5 days, p < 0.001) and 291 in-hospital bed days were saved. Eight (13%) patients needed readmission and there were no adverse outcomes. A key barrier was timely screening of all patients and program improvements, including utilising the electronic medical record for patient identification, are planned. CONCLUSION: This program significantly reduces in-hospital LOS for children with low-risk FN. Ongoing evaluation will inform sustainability, identify areas for improvement and support national scale-up of the program
Local conservation scores without a priori assumptions on neutral substitution rates
<p>Abstract</p> <p>Background</p> <p>Comparative genomics aims to detect signals of evolutionary conservation as an indicator of functional constraint. Surprisingly, results of the ENCODE project revealed that about half of the experimentally verified functional elements found in non-coding DNA were classified as unconstrained by computational predictions. Following this observation, it has been hypothesized that this may be partly explained by biased estimates on neutral evolutionary rates used by existing sequence conservation metrics. All methods we are aware of rely on a comparison with the neutral rate and conservation is estimated by measuring the deviation of a particular genomic region from this rate. Consequently, it is a reasonable assumption that inaccurate neutral rate estimates may lead to biased conservation and constraint estimates.</p> <p>Results</p> <p>We propose a conservation signal that is produced by local Maximum Likelihood estimation of evolutionary parameters using an optimized sliding window and present a Kullback-Leibler projection that allows multiple different estimated parameters to be transformed into a conservation measure. This conservation measure does not rely on assumptions about neutral evolutionary substitution rates and little a priori assumptions on the properties of the conserved regions are imposed. We show the accuracy of our approach (KuLCons) on synthetic data and compare it to the scores generated by state-of-the-art methods (phastCons, GERP, SCONE) in an ENCODE region. We find that KuLCons is most often in agreement with the conservation/constraint signatures detected by GERP and SCONE while qualitatively very different patterns from phastCons are observed. Opposed to standard methods KuLCons can be extended to more complex evolutionary models, e.g. taking insertion and deletion events into account and corresponding results show that scores obtained under this model can diverge significantly from scores using the simpler model.</p> <p>Conclusion</p> <p>Our results suggest that discriminating among the different degrees of conservation is possible without making assumptions about neutral rates. We find, however, that it cannot be expected to discover considerably different constraint regions than GERP and SCONE. Consequently, we conclude that the reported discrepancies between experimentally verified functional and computationally identified constraint elements are likely not to be explained by biased neutral rate estimates.</p
- …