177 research outputs found

    Single-molecule study for a graphene-based nano-position sensor

    Get PDF
    In this study we lay the groundwork for a graphene-based fundamental ruler at the nanoscale. It relies on the efficient energy-transfer mechanism between single quantum emitters and low-doped graphene monolayers. Our experiments, conducted with dibenzoterrylene (DBT) molecules, allow going beyond ensemble analysis due to the emitter photo-stability and brightness. A quantitative characterization of the fluorescence decay-rate modification is presented and compared to a simple model, showing agreement with the d−4d^{-4} dependence, a genuine manifestation of a dipole interacting with a 2D material. With DBT molecules, we can estimate a potential uncertainty in position measurements as low as 5nm in the range below 30nm

    Calculating the turbulent fluxes in the atmospheric surface layer with neural networks

    Get PDF
    The turbulent fluxes of momentum, heat and water vapour link the Earth\u27s surface with the atmosphere. Therefore, the correct modelling of the flux interactions between these two systems with very different timescales is vital for climate and weather forecast models. Conventionally, these fluxes are modelled using Monin–Obukhov similarity theory (MOST) with stability functions derived from a small number of field experiments. This results in a range of formulations of these functions and thus also in differences in the flux calculations; furthermore, the underlying equations are non-linear and have to be solved iteratively at each time step of the model. In this study, we tried a different and more flexible approach, namely using an artificial neural network (ANN) to calculate the scaling quantities u* and ξ* (used to parameterise the fluxes), thereby avoiding function fitting and iteration. The network was trained and validated with multi-year data sets from seven grassland, forest and wetland sites worldwide using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton backpropagation algorithm and six-fold cross validation. Extensive sensitivity tests showed that an ANN with six input variables and one hidden layer gave results comparable to (and in some cases even slightly better than) the standard method; moreover, this ANN performed considerably better than a multivariate linear regression model. Similar satisfying results were obtained when the ANN routine was implemented in a one-dimensional stand-alone land surface model (LSM), paving the way for implementation in three-dimensional climate models. In the case of the one-dimensional LSM, no CPU time was saved when using the ANN version, as the small time step of the standard version required only one iteration in most cases. This may be different in models with longer time steps, e.g. global climate models

    The regional MiKlip decadal forecast ensemble for Europe

    Get PDF

    A new estimator of heat periods for decadal climate predictions - A complex network approach

    Get PDF
    Regional decadal predictions have emerged in the past few years as a research field with high application potential, especially for extremes like heat and drought periods. However, up to now the prediction skill of decadal hindcasts, as evaluated with standard methods, is moderate and for extreme values even rarely investigated. In this study, we use hindcast data from a regional climate model (CCLM) for eight regions in Europe and quantify the skill of the model alternatively by constructing time-evolving climate networks and use the network correlation threshold (link strength) as a predictor for heat periods. We show that the skill of the network measure to estimate the low-frequency dynamics of heat periods is superior for decadal predictions with respect to the typical approach of using a fixed temperature threshold for estimating the number of heat periods in Europe

    Calculating the turbulent fluxes in the atmospheric surface layer with neural networks

    Get PDF
    The turbulent fluxes of momentum, heat and water vapour link the Earth's surface with the atmosphere. Therefore, the correct modelling of the flux interactions between these two systems with very different timescales is vital for climate and weather forecast models. Conventionally, these fluxes are modelled using Monin–Obukhov similarity theory (MOST) with stability functions derived from a small number of field experiments. This results in a range of formulations of these functions and thus also in differences in the flux calculations; furthermore, the underlying equations are non-linear and have to be solved iteratively at each time step of the model. In this study, we tried a different and more flexible approach, namely using an artificial neural network (ANN) to calculate the scaling quantities u* and ξ* (used to parameterise the fluxes), thereby avoiding function fitting and iteration. The network was trained and validated with multi-year data sets from seven grassland, forest and wetland sites worldwide using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton backpropagation algorithm and six-fold cross validation. Extensive sensitivity tests showed that an ANN with six input variables and one hidden layer gave results comparable to (and in some cases even slightly better than) the standard method; moreover, this ANN performed considerably better than a multivariate linear regression model. Similar satisfying results were obtained when the ANN routine was implemented in a one-dimensional stand-alone land surface model (LSM), paving the way for implementation in three-dimensional climate models. In the case of the one-dimensional LSM, no CPU time was saved when using the ANN version, as the small time step of the standard version required only one iteration in most cases. This may be different in models with longer time steps, e.g. global climate models.</p

    Effects of residue management on decomposition in irrigated rice fields are not related to changes in the decomposer community

    Full text link
    Copyright: © 2015 Schmidt et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soildwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices
    • 

    corecore