725 research outputs found

    Preface

    Get PDF

    Calibration of a granular matrix sensor for suction measurements in partially saturated pyroclastic soil

    Get PDF
    Field monitoring of soil moisture and matrix suction is a useful tool for the implementation of a reliable early warning system against rainfall-induced landslide occurrence. Several test fields have been set up in Campania region (southern Italy), frequently affected by flow-like landslides involving pyroclastic soil cover. In particular, at the Mount Faito test site (Lattari Mountains, southeast of Naples), field matric suctions were measured over two years by conventional jet-fill tensiometers and granular matrix sensors (Watermark, Irrometer®) at different depths. Granular matrix sensor is a resistive device that is more and more spread in agriculture applications and that may also be used for geotechnical purposes thanks to a suitable calibration. In order to gain the calibration curve of the Watermark sensor, two small tip tensiometers (STT) and one High Capacity Tensiometer (HCT) were installed at the same depth of the Watermark sensor in the partially saturated pyroclastic soil sampled at the topsoil of the Mount Faito test site. Tests were carried out in the laboratory by performing drying and wetting phases on undisturbed soil sample. By coupling resistance measurements by Watermark and matrix suction provided by the reference tensiometers, it was possible to derive the non-linear relationship between these two quantities. The soil retention curve was also determined thanks to the installation in the soil sample of a decagon probe previously calibrated in the same pyroclastic soil

    Nuclear functions of the tyrosine kinase Src

    Get PDF
    Src is the representative member of the Src-family kinases (SFKs), a group of tyrosine kinases involved in several cellular processes. Its main function has been for long confined to the plasma membrane/cytoplasm compartment, being a myristoylated protein anchored to the cell membrane and functioning downstream to receptors, most of them lacking intrinsic kinase activity. In the last decades, new roles for some SFKs have been described in the nuclear compartment, suggesting that these proteins can also be involved in directly regulating gene transcription or nucleoskeleton architecture. In this review, we focused on those nuclear functions specifically attributable to Src, by considering its function as both tyrosine kinase and adapting molecule. In particular, we addressed the Src involvement in physiological as well as in pathological conditions, especially in tumors

    Softening and instability of natural slopes in highly fissured plastic clay shales

    Get PDF
    International audienceSoftening is often considered to be the main cause of first-time slides in OC clay, but so far the mechanics of softening has not been satisfactorily explained. Bearing on laboratory data and field observations about landslides in tectonized highly plastic clay shales of Italian Apennines, the paper describes a process of soil weakening that could explain some failures of natural slopes

    Water retention and shrinkage curves of weathered pyroclastic soil

    Get PDF
    The modelling of the triggering mechanism of rainfall-induced landslides in slopes covered by pyroclastic soil (as the area surrounding Mount Vesuvius in Campania, Italy) requires the hydraulic characterization of soil in unsaturated conditions in order to analyse the slope response to rainfalls. In previous studies carried out on Campanian pyroclastic soils, the volumetric soil changes due to suction changes have been disregarded, being them negligible in soils characterized by low plasticity and low clay contents. However, a more accurate determination of the water retention curve (WRC) in terms of volumetric water content requires a correct estimation of the total soil volume, which is affected by the soil stress-state. The proper approach would require the estimation of both WRC in terms of gravimetric water content and the shrinkage curve (SC). In the present study, a relation between void ratio and suction was determined for a pyroclastic soil sampled at Mount Faito in Southern Italy. Therefore, a correction of the volumetric water content was carried out resulting in updated water retention curves. Here, the matric suction was the only factor affecting the stress-state of the soil

    A prototype for water content measurement in partially saturated soils

    Get PDF
    The paper presents the technological set-up and calibration of a system based on impedance spectroscopy for measuring water content in partially saturated soils. The technique adopted is relatively recent in geotechnical practice; it is used herein to characterize the electrical response of a soil specimen among two conducting electrodes upon application of an alternate voltage and the measurement of the current intensity resulting across the specimen, for frequency values in the range [500 Hz - 50 kHz]. The complex impedance of the soil specimen is due to both resistance, i.e. opposition to current, and reactance, i.e. tendency of the system to yield and retrieve energy, and it depends on the specimen water content. An on-purpose experimental plan has been conceived and is presented herein, aimed at building a calibration function for deriving the water content in pyroclastic soils from the impedance measurements. Preliminary results reveal an adequate level of repeatability of the measurements and suggest the existence of a monotonic correlation between the impedance modulus and the gravimetric water content

    Do we understand the incompressibility of neutron-rich matter?

    Full text link
    The ``breathing mode'' of neutron-rich nuclei is our window into the incompressibility of neutron-rich matter. After much confusion on the interpretation of the experimental data, consistency was finally reached between different models that predicted both the distribution of isoscalar monopole strength in finite nuclei and the compression modulus of infinite matter. However, a very recent experiment on the Tin isotopes at the Research Center for Nuclear Physics(RCNP) in Japan has again muddled the waters. Self-consistent models that were successful in reproducing the energy of the giant monopole resonance (GMR) in nuclei with various nucleon asymmetries (such as 90Zr, 144Sm, and 208Pb) overestimate the GMR energies in the Tin isotopes. As important, the discrepancy between theory and experiment appears to grow with neutron excess. This is particularly problematic as models artificially tuned to reproduce the rapid softening of the GMR in the Tin isotopes become inconsistent with the behavior of dilute neutron matter. Thus, we regard the question of ``why is Tin so soft?'' as an important open problem in nuclear structure.Comment: 12 pages, 3 figures, and 1 table. Submitted to the "Focus issue on Open Problems in Nuclear Structure", Journal of Physics

    A multidisciplinary study on the spatial variability of the local stratigraphic conditions in partially saturated slopes for flow-like landslide prediction

    Get PDF
    Flow-like landslides, which occur mainly in shallow granular deposits resting on steep bedrock, represent a major natural hazard worldwide. The pore water pressure distribution and the soil water content directly affect the soil shear strength, thus controlling the triggering of these landslides. Criticalgeomorphological and topographical settings, together with peculiar stratigraphic and hydrogeological features, are commonly recognized as predisposing factors for flow-like landslides occurrence. Hence, investigating the spatial and temporal variability of hydraulic slope conditions is a fundamental activity that consists of identifying local geological factors and seasonal monitoring of the subsurface water regime. The present work proposes an integrated geological, geophysical and geotechnical approach to identify the spatial variability of the local stratigraphic setting and hydrogeological conditions in a partially saturated slope, in order to set up a procedure able to provide a prediction of the flow-like landslides occurrence atslope scale. The multidisciplinary study has been applied to a test site on Mt. Faito, in the Lattari Mts. (Southern Italy), where extensive geophysical, geological and geotechnical soil characterization and in situmonitoring data collected over two years are available
    • …
    corecore