41 research outputs found

    Sympathetic Cooling of Mixed Species Two-Ion Crystals for Precision Spectroscopy

    Get PDF
    Sympathetic cooling of trapped ions has become an indispensable tool for quantum information processing and precision spectroscopy. In the simplest situation a single Doppler-cooled ion sympathetically cools another ion which typically has a different mass. We analytically investigate the effect of the mass ratio of such an ion crystal on the achievable temperature limit in the presence of external heating. As an example, we show that cooling of a single Al+ with Be+, Mg+ and Ca+ ions provides similar results for heating rates typically observed in ion traps, whereas cooling ions with a larger mass perform worse. Furthermore, we present numerical simulation results of the rethermalisation dynamics after a background gas collision for the Al+/Ca+ crystal for different cooling laser configurations.Comment: Made Graphics black & white print compatible, clarified abstract and summar

    Frame transformation and geoid undulation transfer to GNSS real time positions through the new RTCM 3.1 transformation messages

    Full text link
    Radio Technical Commission for Marine Services (RTCM) standardised messages play an important role in real time Global Navigation Satellite Systems (GNSS) applications such as navigation, positioning, civil engineering, surveying, and cartographic or cadastral production. One of the latest agreements on RTCM definitions contains the data fields for real time geodetic reference frame transformation and orthometric heights computation by received geoid undulations via internet protocol. These parameters can be generated dynamically by a GNSS data centre in a network of reference stations, encapsulated in RTCM messages and broadcasted to the rover location so they are centrally administered and the same frame transformations and geoid model are available to every user in the field, obtaining results in a local reference frame in real time. This paper summarises the functionality of the new RTCM 3?1 transformation messages, describes limitations and provides ideas about the possible use for solving specific problems. Test field campaigns are used to describe the real performance and usefulness of these new RTCM 3?1 messagesCapilla Roma, R.; Martín Furones, ÁE.; Anquela Julián, AB.; Berné Valero, JL. (2012). Frame transformation and geoid undulation transfer to GNSS real time positions through the new RTCM 3.1 transformation messages. Survey Review. 44(324):30-36. doi:10.1179/1752270611Y.0000000010S303644324Benciolini, B., Biagi, L., Crespi, M., Manzino, A. M., & Roggero, M. (2008). Reference frames for GNSS positioning services: Some problems and proposed solutions. Journal of Applied Geodesy, 2(1). doi:10.1515/jag.2008.006González-Matesanz, J., Dalda, A., & Malpica, J. A. (2006). A RANGE OF ED50-ETRS89 DATUM TRANSFORMATION MODELS TESTED ON THE SPANISH GEODETIC NETWORK. Survey Review, 38(302), 654-667. doi:10.1179/sre.2006.38.302.654Soler, T., & Marshall, J. (2003). A note on frame transformations with applications to geodetic datums. GPS Solutions, 7(2), 148-149. doi:10.1007/s10291-003-0063-

    On biases in precise point positioning with multi-constellation and multi-frequency GNSS data

    Get PDF
    © 2016 IOP Publishing Ltd. Various types of biases in Global Navigation Satellite System (GNSS) data preclude integer ambiguity fixing and degrade solution accuracy when not being corrected during precise point positioning (PPP). In this contribution, these biases are first reviewed, including satellite and receiver hardware biases, differential code biases, differential phase biases, initial fractional phase biases, inter-system receiver time biases, and system time scale offset. PPP models that take account of these biases are presented for two cases using ionosphere-free observations. The first case is when using primary signals that are used to generate precise orbits and clock corrections. The second case applies when using additional signals to the primary ones. In both cases, measurements from single and multiple constellations are addressed. It is suggested that the satellite-related code biases be handled as calibrated quantities that are obtained from multi-GNSS experiment products and the fractional phase cycle biases obtained from a network to allow for integer ambiguity fixing. Some receiver-related biases are removed using between-satellite single differencing, whereas other receiver biases such as inter-system biases are lumped with differential code and phase biases and need to be estimated. The testing results show that the treatment of biases significantly improves solution convergence in the float ambiguity PPP mode, and leads to ambiguity-fixed PPP within a few minutes with a small improvement in solution precision

    Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second

    Full text link
    We demonstrate a fully optical, long-distance remote comparison of independent ultrastable optical frequencies reaching a short term stability that is superior to any reported remote comparison of optical frequencies. We use two ultrastable lasers, which are separated by a geographical distance of more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a commercial telecommunication network. The remote characterization spans more than one optical octave and reaches a fractional frequency instability between the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved performance at 100 ms represents an improvement by one order of magnitude to any previously reported remote comparison of optical frequencies and enables future remote dissemination of the stability of 100 mHz linewidth lasers within seconds.Comment: 7 pages, 4 figure

    Centro de Análise Sirgas - IBGE: novas estratégias de processamento e combinação, e a influência da mudança do referencial global nos resultados

    Get PDF
    Atualmente, o SIRGAS (Sistema de Referência Geocêntrico para as Américas) é realizado por uma rede GNSS (Global Navigation Satellite System) permanente denominada SIRGAS-CON, com cerca de 240 estações em funcionamento permanente, distribuídas na América do Sul, Central e Caribe. Os Centros de Análise SIRGAS foram estabelecidos com a finalidade de determinar sistematicamente as coordenadas das estações SIRGAS-CON, seguindo padrões estabelecidos internacionalmente, a fim de apoiar a manutenção do sistema e as atividades do Grupo de Trabalho SIRGAS-GT I (Sistema de Referência). Desde agosto de 2008 a Coordenação de Geodésia do Instituto Brasileiro de Geografia e Estatística-IBGE assumiu oficialmente as atividades de um Centro de Análise. Este é um trabalho cuja dedicação é crescente uma vez que o número de estações no continente Sul Americano vem aumentando rapidamente nos últimos anos. Desta atividade diária são geradas dentre outros resultados, as séries temporais das coordenadas de cada estação, possibilitando assim a determinação dos deslocamentos das estações em função da movimentação da crosta terrestre, os movimentos locais como subsidência e/ou soerguimento crustal, causados por fenômenos naturais, como por exemplo, terremotos, além de efeitos sazonais causados por fatores diversos. Paralelamente a atividade de processamento dos dados GNSS, o IBGE também realiza semanalmente a combinação das soluções semanais dos nove Centros de Processamento SIRGAS. Esta combinação tem por objetivo comparar os resultados com os obtidos pelo DGFI (Deutsches Geodätisches Forschungsinstitut), o qual disponibiliza a solução final semanal da rede SIRGAS-CON. Por se tratar de resultados precisos, a mudança em alguma informação no processamento pode acarretar alterações nas coordenadas determinadas e, conseqüentemente, descontinuidades nas séries temporais de cada estação. Recentemente, em 17 de abril de 2011 (semana GPS 1632), as órbitas (finais e rápidas), as correções dos relógios dos satélites e o modelo de calibração das antenas disponibilizado pelo International GNSS Service - IGS, passaram a estar referidos à nova realização do IGS, denominada IGS08. Conseqüentemente, a partir dessa data, os processamentos GPS que utilizam os produtos IGS terão seus resultados referidos a este novo sistema de referência, o que poderá acarretar descontinuidades nas coordenadas. O objetivo desse trabalho é apresentar a estratégia de processamento atualmente em operação, bem com uma nova estratégia visando à melhoria dos resultados. Outro objetivo é apresentar alguns resultados do processamento e combinação semanal realizados pelo IBGE, bem como esclarecer as alterações ocorridas com a adoção da nova versão da Rede de Referência Global para soluções GNSS, o IGS08 e uma análise preliminar da conseqüência desta mudança

    Remote frequency measurement of the 1S0-3P1 transition in laser cooled Mg-24

    Get PDF
    We perform Ramsey-Bord\'e spectroscopy on laser-cooled magnesium atoms in free fall to measure the 1S0 \rightarrow 3P1 intercombination transition frequency. The measured value of 655 659 923 839 730 (48) Hz is consistent with our former atomic beam measurement (Friebe et al 2008 Phys. Rev. A 78 033830). We improve upon the fractional accuracy of the previous measurement by more than an order of magnitude to 7e-14. The magnesium frequency standard was referenced to a fountain clock of the Physikalisch-Technische Bundesanstalt (PTB) via a phase-stabilized telecom fiber link and its stability was characterized for interrogation times up to 8000 s. The high temperature of the atomic ensemble leads to a systematic shift due to the motion of atoms across the spectroscopy beams. In our regime, this leads to a counterintuitive reduction of residual Doppler shift with increasing resolution. Our theoretical model of the atom-light interaction is in agreement with the observed effect and allows us to quantify its contribution in the uncertainty budget.Comment: 16 pages, 8 figures. Accepted in New Journal of Physic

    Mutual Validation of GNSS Height Measurements and High-precision Geometric-astronomical Leveling

    Get PDF
    The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies

    A GPS Survey in the Yunnan Earthquake Experimental Field Objectives and First Results

    No full text
    corecore