671 research outputs found

    Marine Biodegradability and Ecotoxicity of MWool((R)) Recycled Wool Fibers: A Circular-Economy-Based Material

    Get PDF
    Pollution of the marine environment by microfibers is considered a problem for ecosystem conservation. The amount of microplastic, localization of sources, and associated ecotoxicity are well known in the literature. Wastewater from washing machines is the main source of microplastic fibers in the aquatic environment, and fabrics made from recycled plastic are widely reused. The circular economy also promotes recycling of dyed natural wool materials as a basis for making new clothing, but in this case, less research has been conducted on the behaviour and effects of recycled wool microfibers in marine ecosystems. MWool((R)) (MW) and MWool((R)) carded (MWc) products made from recycled wool fibers were tested in mesocosms to investigate the biodegradation of wool fibers over a 260-day period and the effects of this process on marine ecosystems in terms of microfiber inputs and the ecotoxicological effects of by-products and chemicals released during degradation. The early degradation process was associated with the loss of artificial pigments from the dyed wool, particularly pink and red, which occurred within 30-90 days of exposure. Mean release of microparticles into contact water is significantly different from control (T0, p < 0.01) at 90 days MWc (36.6 mg/L) and 180 days MW (42.9 mg/L). The biodegradation process is accompanied by swelling of wool fibers, which is associated with a significant increase in mean wool thickness (p < 0.05, 18.8 +/-.1 mu m at T0 vs. 24.0 +/- 7.1 mu m). In both cases, the contact water was not associated with signs of ecotoxicity for the marine species tested in this study (Phaeodactylum tricornutum, Brachionus plicatilis, and Paracentrotus lividus)

    Exploring the role of blockchain technology in modern high-value food supply chains: global trends and future research directions

    Get PDF
    Trust, safety, and quality are among the most important factors in the agri-food supply chains. Traceability is a powerful tool to ensure them, but implementing a transparent and effective system is a complex operation. As a result, innovative systems, like blockchain, could be introduced. Although research on its impacts in the agri-food is recent, the literature appears fragmented. The objective is to investigate the studied aspects of the blockchain adoption in agri-food, with the purpose of retrieving meaningful considerations about the current state of the art about strategic high-value supply chains, such as wine and olive oil, particularly subjected to fraudulent behaviors. A productivity measurement was applied to retrieve the evolution of the number of documents through the years, the most productive countries, the sources, the research areas, and the most significant papers in terms of number of citations received. To understand the research trends, a co-occurrence analysis was employed. Results show that most of the existing studies focus on the role of blockchain in the resolution of some critical issues as food safety and frauds. While wine is currently an emerging sector in which this approach can be implemented, olive oil still needs more attention. In both cases, blockchain could potentially help to support the profitability and sustainability of the production. The research underlines the importance of focusing on the environmental and social dimension of the blockchain phenomenon and the use of technology to improve the efficiency of agri-food chains and reduce waste and resource use

    Experimental sleep deprivation as a tool to test memory deficits in rodents.

    Get PDF
    Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed

    Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats

    Get PDF
    Rationale Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. Objectives Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. Methods The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. Results We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. Conclusions These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control

    Actigraphy in Human African Trypanosomiasis as a Tool for Objective Clinical Evaluation and Monitoring: A Pilot Study

    Get PDF
    The clinical picture of the parasitic disease human African trypanosomiasis (HAT, also called sleeping sickness) is dominated by sleep alterations. We here used actigraphy to evaluate patients affected by the Gambiense form of HAT. Actigraphy is based on the use of battery-run, wrist-worn devices similar to watches, widely used in middle-high income countries for ambulatory monitoring of sleep disturbances. This pilot study was motivated by the fact that the use of polysomnography, which is the gold standard technology for the evaluation of sleep disorders and has greatly contributed to the objective identification of signs of disease in HAT, faces tangible challenges in resource-limited countries where the disease is endemic. We here show that actigraphy provides objective data on the severity of sleep-wake disturbances that characterize HAT. This technique, which does not disturb the patient's routine activities and can be applied at home, could therefore represent an interesting, non-invasive tool for objective HAT clinical assessment and long-term monitoring under field conditions. The use of this method could provide an adjunct marker of HAT severity and for treatment follow-up, or be evaluated in combination with other disease biomarkers in body fluids that are currently under investigation in many laboratories

    Methods for analysis of brain connectivity : An IFCN-sponsored review

    Get PDF
    The goal of this paper is to examine existing methods to study the "Human Brain Connectome" with a specific focus on the neurophysiological ones. In recent years, a new approach has been developed to evaluate the anatomical and functional organization of the human brain: the aim of this promising multimodality effort is to identify and classify neuronal networks with a number of neurobiologically meaningful and easily computable measures to create its connectome. By defining anatomical and functional connections of brain regions on the same map through an integrated approach, comprising both modern neurophysiological and neuroimaging (i.e. flow/metabolic) brain-mapping techniques, network analysis becomes a powerful tool for exploring structural-functional connectivity mechanisms and for revealing etiological relationships that link connectivity abnormalities to neuropsychiatric disorders. Following a recent IFCN-endorsed meeting, a panel of international experts was selected to produce this current state-of-art document, which covers the available knowledge on anatomical and functional connectivity, including the most commonly used structural and functional MRI, EEG, MEG and non-invasive brain stimulation techniques and measures of local and global brain connectivity. (C) 2019 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.Peer reviewe

    Frequency and phenotypic spectrum of KMT2B dystonia in childhood: A single‐center cohort study

    Get PDF
    Background: Childhood-onset dystonia is often genetically determined. Recently, KMT2B variants have been recognized as an important cause of childhood-onset dystonia. Objective: To define the frequency of KMT2B mutations in a cohort of dystonic patients aged less than 18 years at onset, the associated clinical and radiological phenotype, and the natural history of disease. Methods: Whole-exome sequencing or customized gene panels were used to screen a cohort of sixty-five patients who had previously tested negative for all other known dystonia-associated genes. Results: We identified fourteen patients (21.5%) carrying KMT2B variants, of which one was classified as a Variant of Unknown Significance (VUS). We also identified two additional patients carrying pathogenic mutations in GNAO1 and ATM. Overall, we established a definitive genetic diagnosis in 23% of cases. We observed a spectrum of clinical manifestations in KMT2B variant carriers, ranging from generalized dystonia to short stature or intellectual disability alone, even within the same family. In 78.5% of cases, dystonia involved the lower limbs at onset, with later caudo-cranial generalization. Eight patients underwent pallidal Deep Brain Stimulation with a median decrease of BFMDRS-M score of 38.5% in the long term. We also report four asymptomatic carriers, suggesting that some KMT2B mutations may be associated with incomplete disease penetrance. Conclusions: KMT2B mutations are frequent in childhood-onset dystonia and cause a complex neurodevelopmental syndrome often featuring growth retardation and intellectual disability as additional phenotypic features. A dramatic and long-lasting response to Deep Brain Stimulation is characteristic of DYT-KMT2B dystonia

    Two-photon microscopy imaging of thy1GFP-M transgenic mice: a novel animal model to investigate brain dendritic cell subsets in vivo

    Get PDF
    Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for in vivo brain studies with two-photon fluorescence (TPF) microscopy. Mice of the thy1GFP-M line have been engineered for selective expression of green fluorescent protein (GFP) in neuronal populations. Here, we report that TPF microscopy reveals, at the brain surface of these mice, also motile non-neuronal GFP+ cells. We have analyzed the behavior of these cells in vivo and characterized in brain sections their immunophenotype. With TPF imaging, motile GFP+ cells were found in the meninges, subarachnoid space and upper cortical layers. The striking feature of these cells was their ability to move across the brain parenchyma, exhibiting evident shape changes during their scanning-like motion. In brain sections, GFP+ cells were immunonegative to antigens recognizing motile cells such as migratory neuroblasts, neuronal and glial precursors, mast cells, and fibroblasts. GFP+ non-neuronal cells exhibited instead the characteristic features and immunophenotype (CD11c and major histocompatibility complex molecule class II immunopositivity) of dendritic cells (DCs), and were immunonegative to the microglial marker Iba-1. GFP+ cells were also identified in lymph nodes and blood of thy1GFP-M mice, supporting their identity as DCs. Thus, TPF microscopy has here allowed the visualization for the first time of the motile behavior of brain DCs in situ. The results indicate that the thy1GFP-M mouse line provides a novel animal model for the study of subsets of these professional antigen-presenting cells in the brain. Information on brain DCs is still very limited and imaging in thy1GFP-M mice has a great potential for analyses of DC-neuron interaction in normal and pathological conditions

    Intraoperative Local Field Potential Beta Power and Three-Dimensional Neuroimaging Mapping Predict Long-Term Clinical Response to Deep Brain Stimulation in Parkinson Disease: A Retrospective Study

    Get PDF
    background: directional deep brain stimulation (DBS) leads allow a fine-tuning control of the stimulation field, however, this new technology could increase the DBS programming time because of the higher number of the possible combinations used in directional DBS than in standard nondirectional electrodes. neuroimaging leads localization techniques and local field potentials (LFPs) recorded from DBS electrodes implanted in basal ganglia are among the most studied biomarkers for DBS programing. objective: this study aimed to evaluate whether intraoperative LFPs beta power and neuroimaging reconstructions correlate with contact selection in clinical programming of DBS in patients with Parkinson disease (PD). materials and methods: In this retrospective study, routine intraoperative LFPs recorded from all contacts in the subthalamic nucleus (STN) of 14 patients with PD were analyzed to calculate the beta band power for each contact. neuroimaging reconstruction obtained through brainlab elements planning software detected contacts localized within the STN. clinical DBS programming contact scheme data were collected after one year from the implant. statistical analysis evaluated the diagnostic performance of LFPs beta band power and neuroimaging data for identification of the contacts selected with clinical programming. we evaluated whether the most effective contacts identified based on the clinical response after one year from implant were also those with the highest level of beta activity and localized within the STN in neuroimaging reconstruction. results: LFPs beta power showed a sensitivity of 67%, a negative predictive value (NPV) of 84%, a diagnostic odds ratio (DOR) of 2.7 in predicting the most effective contacts as evaluated through the clinical response. neuroimaging reconstructions showed a sensitivity of 62%, a NPV of 77%, a DOR of 1.20 for contact effectivity prediction. the combined use of the two methods showed a sensitivity of 87%, a NPV of 87%, a DOR of 2.7 for predicting the clinically more effective contacts. conclusions: the combined use of LFPs beta power and neuroimaging localization and segmentations predict which are the most effective contacts as selected on the basis of clinical programming after one year from implant of DBS. the use of predictors in contact selection could guide clinical programming and reduce time needed for it
    corecore