3,827 research outputs found
Development and Evaluation of an Impedance Cardiographic System to Measure Cardiac Output and Other Cardiac Parameters, 1 July 1968 - 30 June 1969
Impedance cardiographic system to measure cardiac output and cardiovascular function
Directional emission of light from a nano-optical Yagi-Uda antenna
The plasmon resonance of metal nanoparticles can enhance and direct light
from optical emitters in much the same way that radio frequency (RF) antennas
enhance and direct the emission from electrical circuits. In the RF regime, a
typical antenna design for high directivity is the Yagi-Uda antenna, which
basically consists of a one-dimensional array of antenna elements driven by a
single feed element. Here, we present the experimental demonstration of
directional light emission from a nano-optical Yagi-Uda antenna composed of an
array of appropriately tuned gold nanorods. Our results indicate that
nano-optical antenna arrays are a simple but efficient tool for the spatial
control of light emission.Comment: 4 pages, including 4 figure
The Chisholm firestorm: observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus
International audienceA fire storm that occurred on 28 May 2001 and devastated the town of Chisholm, ~150 km north of Edmonton, Alberta, induced a violent fire-invigorated cumulonimbus cloud. This pyro-cumulonimbus (pyro-Cb) had overshooting tops of 2.5?3 km above the tropopause, and injected massive amounts of smoke into the lower stratosphere. Fortunately, this event occurred under good coverage of radar, rain gauge, lightning and satellite measurements, which allowed in-depth documentation of the event, and gave us an opportunity to study the cloud top morphology and microstructure, precipitation and cloud electrification of the pyro-Cb. The combination of heat and smoke created a cloud with extremely small drops, which ascended rapidly in violent updrafts. There appeared to be little freezing up to the homogeneous freezing isotherm level of ?38°C. A cloud with such small and short-lived highly supercooled drops is incapable of producing precipitation except for few large graupel and hail, which produced the observed radar echoes and charged the cloud with positive lightning. The small cloud drops froze homogeneously to equally small ice particles, for which there is no mechanism to aggregate into precipitation particles, and which hence remain in the anvil. The lack of significant precipitation implies that only a small fraction of the smoke is scavenged, so that most of it is exhausted through the anvil to the upper troposphere and lower stratosphere. Comparisons with other cases suggest that a pyro-Cb does not have to be as violent as the Chisholm case for precipitation to be strongly suppressed. However, this level of convective vigor is necessary to create the overshooting updraft that injects the smoke into the lower stratosphere
Recommended from our members
Small-scale mixing processes enhancing troposphere-to-stratosphere transport by pyro-cumulonimbus storms
Deep convection induced by large forest fires is an efficient mechanism for transport of aerosol particles and trace gases into the upper troposphere and lower stratosphere (UT/LS). For many pyro-cumulonimbus clouds (pyroCbs) as well as other cases of severe convection without fire forcing, radiometric observations of cloud tops in the thermal infrared (IR) reveal characteristic structures, featuring a region of relatively high brightness temperatures (warm center) surrounded by a U-shaped region of low brightness temperatures. We performed a numerical simulation of a specific case study of pyroCb using a non-hydrostatic cloud resolving model with a two-moment cloud microphysics parameterization and a prognostic turbulence scheme. The model is able to reproduce the thermal IR structure as observed from satellite radiometry. Our findings establish a close link between the observed temperature pattern and small-scale mixing processes atop and downwind of the overshooting dome of the pyroCb. Such small-scale mixing processes are strongly enhanced by the formation and breaking of a stationary gravity wave induced by the overshoot. They are found to increase the stratospheric penetration of the smoke by up to almost 30 K and thus are of major significance for irreversible transport of forest fire smoke into the lower stratosphere
The Chisholm firestorm: observed microstructure, precipitation and lightning activity of a pyro-Cb
International audienceA fire storm that occured on 28 May 2001 devastated the town of Chisholm, ~150 km north of Edmonton, Alberta, induced a violent fire-invigorated cumulonimbus cloud. This pyro-cumulonimbus (pyro-Cb) had overshooting tops of 2.5?3 km above the tropopause, and injected massive amounts of smoke into the lower stratosphere. Fortunately, this event occurred under good coverage of radar, rain gauge, lightning and satellite measurements, which allowed in-depth documentation of the event. The combination of heat and smoke created a cloud with extremely small drops, which ascended rapidly in violent updrafts. There appeared to be little freezing up to the homogeneous freezing isotherm level of ?38°C. A cloud with such small and short-lived highly supercooled drops is incapable of producing precipitation except for few large graupel and hail, which produced the observed radar echoes and charged the cloud with positive lightning. The small cloud drops froze homogeneously to equally small ice particles, for which there is no mechanism to aggregate into precipitation particles that hence remain in the anvil. The small precipitation efficiency implies that only a small fraction of the smoke is scavenged, so that most of it is exhausted through the anvil to the upper troposphere and lower stratosphere. Comparisons with other cases suggest that a pyro-Cb does not have to be as violent as the Chisholm case to have strongly suppressed precipitation. However, this level of convective vigor is necessary to create the overshooting updraft that injects the smoke into the lower stratosphere
Observations and analysis of polar stratospheric clouds detected by POAM III and SAGE III during the SOLVE II/VINTERSOL campaign in the 2002/2003 Northern Hemisphere winter
The Polar Ozone and Aerosol Measurement and Stratospheric Aerosol and Gas Experiment instruments both observed high numbers of polar stratospheric clouds (PSCs) in the polar region during the second SAGE Ozone Loss and Validation (SOLVE II) and Validation of INTERnational Satellites and Study of Ozone Loss (VINTERSOL) campaign, conducted during the 2002/2003 Northern Hemisphere winter. Between 15 November 2002 (14 November 2002) and 18 March 2003 (21 March 2003) SAGE (POAM) observed 122 (151) aerosol extinction profiles containing PSCs. PSCs were observed on an almost daily basis, from early December through 15 January, in both instruments. No PSCs were observed from either instrument from 15 January until 4 February, and from then only sparingly in three periods in mid- and late February and mid-March. In early December, PSCs were observed in the potential temperature range from roughly 375 K to 750 K. Throughout December the top of this range decreases to near 600 K. In February and March, PSC observations were primarily constrained to potential temperatures below 500 K. The PSC observation frequency as a function of ambient temperature relative to the nitric acid-trihydrate saturation point (using a nitric acid profile prior to denitrification) was used to infer irreversible denitrification. By late December 38% denitrification was inferred at both the 400–475 K and 475–550 K potential temperature ranges. By early January extensive levels of denitrification near 80% were inferred at both potential temperature ranges, and the air remained denitrified at least through early March
On the evaluation of some three-body variational integrals
Stable recursive relations are presented for the numerical computation of the
integrals
(, and integer, , and real) when the
indices , or are negative. Useful formulas are given for particular
values of the parameters , and .Comment: 12 pages, 1 figure (PS) and 3 tables. Old figures 2 and 3 replaced by
Tables I and III. A further table added. Paper enlarged giving some tips on
the convergence of quadrature
Accounting students' expectations and transition experiences of supervised work experience
Political and economic discourses position employability as a responsibility of higher education, which utilise mechanisms such as supervised work experience (SWE) to embed employability into the undergraduate curriculum. However, sparse investigation of students' contextualised experiences of SWE results in little being known about the mechanisms through which students derive employability benefits from SWE. The aim of this study is to examine the impact of students' expectation and conception of workplace learning on their transition into SWE. Analysis of accounting students' experiences reveal two broad conceptions of workplace learning, the differing impacts of which on transition experience are explored using existing learning transfer perspectives. Students displaying the more common 'technical' conception construct SWE as an opportunity to develop technical, knowledge-based expertise and abilities that prioritize product-based or cognitive learning transfer. Students with an 'experiential' conception were found to construct SWE primarily as an experience through which the development of personal skills and abilities beyond technical expertise are prioritized using process-based or socio-cultural learning transfer. Further data analysis suggests that these two learning transfer approaches have differing impacts on students' employability development which may indicate a need for universities to consider how to develop appropriate student expectations of and approaches to SWE and meaningful support for students' SWE transition
Ervas daninhas do Brasil. Solanaceae I. Gênero Solanum L.
bitstream/item/100434/1/Ervas-daninhas-brasil.pd
- …