52 research outputs found

    Effects of experimental warming on Carbon sink function of a temperate pristine mire : The project PEATWARM

    No full text
    International audienceWithin the PEATWARM project, we use Sphagnum peatlands as a model to analyse their vulnerability to climate change using an experimental system (ITEX) that simulates in situ an increase in average temperature. We aim to determine the effects of temperature increase on the vegetation, the balance of above- and belowground gas fluxes (CO2 and CH4), the microbial diversity and activity in Sphagnum mosses and in peat, and the dynamics of labile and recalcitrant organic matter of peat. The ultimate objective is the creation of a biogeochemical model of C coupled with N and S cycles that includes interactions between these key compartments. Keywords: Global warming, C, N, S cycles, ITEX manipulations, ecosystem structure and function, biogeochemical model of C

    Unraveling the Stratification of an Iron-Oxidizing Microbial Mat by Metatranscriptomics

    No full text
    International audienceA metatranscriptomic approach was used to study community gene expression in a naturally occurring iron-rich microbial mat. Total microbial community RNA was reversely transcribed and sequenced by pyrosequencing. Characterization of expressed gene sequences provided accurate and detailed information of the composition of the transcriptionally active community and revealed phylogenetic and functional stratifications within the mat. Comparison of 16S rRNA reads and delineation of OTUs showed significantly lower values of metatranscriptomic-based richness and diversity in the upper parts of the mat than in the deeper regions. Taxonomic affiliation of rRNA sequences and mRNA genome recruitments indicated that iron-oxidizing bacteria affiliated to the genus Leptothrix, dominated the community in the upper layers of the mat. Surprisingly, type I methanotrophs contributed to the majority of the sequences in the deep layers of the mat. Analysis of mRNA expression patterns showed that genes encoding the three subunits of the particulate methane monooxygenase (pmoCAB) were the most highly expressed in our dataset. These results provide strong hints that iron-oxidation and methane-oxidation occur simultaneously in microbial mats and that both groups of microorganisms are major players in the functioning of this ecosystem

    FTIR spectroscopy can predict organic matter quality in regenerating cutover peatlands.

    No full text
    International audienceVegetational changes during the restoration of cutover peatlands leave a legacy in terms of the organic matter quality of the newly formed peat. Current efforts to restore peatlands at a large scale therefore require low cost, and high throughout, techniques to monitor the evolution of organic matter. In this study, we assessed the Fourier Transform Infrared (FTIR) spectra of the organic matter in peat samples at various stages of peatland regeneration from five European countries. Using predictive partial least squares analyses, we were able to reconstruct both peat C:N ratio and carbohydrate signatures, but not the micromorphological composit ion of vegetation remains, from the FTIR datasets. Despite utilising different size fractions, both carbohydrate (< 200 ÎĽm fraction) and FTIR (bulk soil) analyses report on the composition of plant cell wall constituents in the peat and therefore essentially reveal the composition of the parent vegetational material. This suggests that FTIR analysis of peat may be used successfully for evaluation of the present and future organic matter composition of peat in monitoring of restoration efforts

    Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology.

    No full text
    Peatlands are ecosystems of exceptional conservation value because of their beauty, biodiversity, importance in global geochemical cycles, and the paleoenvironmental records they preserve. Commercial extraction and drainage for forestry or agriculture have caused the destruction of many peatlands, especially in or close to urban areas of the northern temperate zone. Are these commercial and environmental interests irreconcilable? A close analysis suggests that limited peat extraction may actually increase biodiversity in some cases, and may be sustainable over the long term. As we learn more about how peatlands spontaneously regenerate following disturbance, and what conditions govern the re-establishment of a diverse community and the ability to sequester carbon, we increase our chances of being able to restore damaged peatlands. Preserving the chronological records hidden in the peat profile, the natural heritage value of peatlands, and the bulk of sequestered carbon, however, will remain incompatible with any form of exploitation

    Effects of experimental warming on carbon sink function of a temperate pristine mire : the PEATWARM project.

    Get PDF
    communication oraleInternational audienceWithin the PEATWARM project, we use Sphagnum peatlands as a model to analyse their vulnerability to climate change using an experimental system (ITEX) that simulates in situ an increase in average temperature. We aim to determine the effects of temperature increase on the vegetation, the balance of above- and belowground gas fluxes (CO2 and CH4), the microbial diversity and activity in Sphagnum mosses and in peat, and the dynamics of labile and recalcitrant organic matter of peat. The ultimate objective is the creation of a biogeochemical model of C coupled with N and S cycles that includes interactions between these key compartments

    Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions

    No full text
    International audiencePeatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatland

    Production primaire et accumulation de matiere organique dans les tourbieres a Sphaignes des Monts du Forez (Puy-de-Dome). Influence des activites humaines sur leur fonctionnement et leur evolution

    No full text
    Available from INIST (FR), Document Supply Service, under shelf-number : T 82612 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc
    • …
    corecore