277 research outputs found

    Small vessel disease pathological changes in neurodegenerative and vascular dementias concomitant with autonomic dysfunction

    Get PDF
    We performed a clinicopathological study to assess the burden of small vessel disease (SVD) type of pathological changes in elderly demented subjects, who had clinical evidence of autonomic dysfunction, either carotid sinus hypersensitivity or orthostatic hypotension or both or had exhibited unexpected repeated falls. Clinical and neuropathological diagnoses in 112 demented subjects comprised dementia with Lewy bodies (DLB), Parkinson's disease with dementia (PDD), Alzheimer's disease (AD), Mixed dementia (mostly ADā€DLB) and vascular dementia (VaD). Of these, 12 DLB subjects had no recorded unexpected falls in life and therefore no evidence of concomitant autonomic dysfunction. A further 17 subjects were assessed as aging controls without significant pathology or signs of autonomic dysfunction. We quantified brain vascular pathological changes and determined severities of neurodegenerative lesions including Ī±ā€synuclein pathology. We found moderateā€severe vascular changes and highā€vascular pathology scores (P < 0.01) in all neurodegenerative dementias and as expected in VaD compared to similar age controls. Arteriolosclerosis, perivascular spacing and microinfarcts were frequent in the basal ganglia and frontal white matter (WM) across all dementias, whereas small infarcts (<5 mm) were restricted to VaD. In a subā€set of demented subjects, we found that vascular pathology scores were correlated with WM hyperintensity volumes determined by MRI in life (P < 0.02). Sclerotic index values were increased by ~50% in both the WM and neocortex in all dementias compared to similar age controls. We found no evidence for increased Ī±ā€synuclein deposition in subjects with autonomic dysfunction. Our findings suggest greater SVD pathological changes occur in the elderly diagnosed with neurodegenerative dementias including DLB and who develop autonomic dysfunction. SVD changes may not necessarily manifest in clinically overt symptoms but they likely confound motor or cognitive dysfunction. We propose dysautonomia promotes chronic cerebral hypoperfusion to impact upon agingā€related neurodegenerative disorders and characterize their endā€stage clinical syndromes

    Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia

    Get PDF
    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP + astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehydedehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP + cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by 42-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P50.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP + astrocytes with disrupted end-feet juxtaposed to microvessels. To explore whether this was associated with the disrupted gliovascular interactions or bloodā€“brain barrier damage, we assessed the co-localization of GFAP and AQP4 immunoreactivities in post-mortem brains from adult baboons with cerebral hypoperfusive injury, induced by occlusion of three major vessels supplying blood to the brain. Analysis of the frontal white matter in perfused brains from the animals surviving 1ā€“28 days after occlusion revealed that the highest intensity of fibrinogen immunoreactivity was at 14 days. At this survival time point, we also noted strikingly similar redistribution of AQP4 and GFAP + astrocytes transformed into clasmatodendrocytes. Our findings suggest novel associations between irreversible astrocyte injury and disruption of gliovascular interactions at the bloodā€“brain barrier in the frontal white matter and cognitive impairment in elderly post-stroke survivors. We propose that clasmatodendrosis is another pathological substrate, linked to white matter hyperintensities and frontal white matter changes, which may contribute to post-stroke or small vessel disease dementia

    Cerebral glucose metabolism and cognition in newly diagnosed Parkinsonā€™s disease: ICICLE-PD study

    Get PDF
    This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1136/jnnp-2016-31391

    Mild cognitive impairment with Lewy bodies: blood perfusion with arterial spin labelling

    Get PDF
    This is the final version. Available on open access from via the DOI in this recordObjective: To use arterial spin labelling (ASL) to investigate differences in perfusion in mild cognitive impairment with Lewy bodies (MCI-LB) compared to Alzheimer type MCI (MCI-AD) and healthy controls. Methods: We obtained perfusion images on 32 MCI-LB, 30 MCI-AD and 28 healthy subjects of similar age. Perfusion relative to cerebellum was calculated, and we aimed to examine differences in relative perfusion between MCI-LB and the other groups. This included whole brain voxelwise comparisons, as well as using predefined region-of-interest ratios of medial occipital to medial temporal, and posterior cingulate to precuneus. Differences in occipital perfusion in eyes open vs eyes closed conditions were also examined. Results: Compared to controls, the MCI-LB showed reduced perfusion in the precuneus, parietal, occipital and fusiform gyrus regions. In our predefined regions, the ratio of perfusion in occipital / medial temporal was significantly lower, and the posterior cingulate / precuneus ratio significantly higher in MCI-LB compared to controls. Overall, the occipital perfusion was greater in the eyes open vs closed condition, but this did not differ between groups. Conclusion: We found patterns of altered perfusion in MCI-LB which are similar to those seen in dementia with Lewy bodies, with reduction in posterior parietal and occipital regions, but relatively preserved posterior cingulate.Alzheimerā€™s Research UKNational Institute for Health Research (NIHR

    Neuropsychological Impairments and their cognitive architecture in Mild Cognitive Impairment (MCI) with Lewy Bodies and MCI-Alzheimerā€™s Disease

    Get PDF
    This is the final version. Available on open access from Cambridge University Press via the DOI in this recordObjective: The present study aimed to clarify the neuropsychological profile of the emergent diagnostic category of Mild Cognitive Impairment with Lewy bodies (MCI-LB) and determine whether domain-specific impairments such as in memory were related to deficits in domain-general cognitive processes (executive function or processing speed). Method: Patients (n=83) and healthy age- and sex-matched controls (n=34) underwent clinical and imaging assessments. Probable MCI-LB (n=44) and MCI-AD (n=39) were diagnosed following National Institute on Aging-Alzheimerā€™s Association (NIA-AA) and DLB consortium criteria. Neuropsychological measures included cognitive and psychomotor speed, executive function, working memory, and verbal and visuospatial recall. Results: MCI-LB scored significantly lower than MCI-AD on processing speed (Trail Making Test B: p=0.03, g=0.45; Digit Symbol Substitution Test [DSST]: p=0.04, g=0.47; DSST Error Check: p.05) Conclusions: MCI-LB was characterised by executive dysfunction and slowed processing speed but did not show the visuospatial dysfunction expected, whilst MCI-AD displayed an amnestic profile. However, there was considerable neuropsychological profile overlap and processing speed mediated performance in both MCI subtypes.Alzheimerā€™s Research UKMedical Research Council (MRC)GE HealthcareAlzheimerā€™s SocietyNational Institute for Health Research (NIHR
    • ā€¦
    corecore