6,407 research outputs found
An intrinsic characterization of 2+2 warped spacetimes
We give several equivalent conditions that characterize the 2+2 warped
spacetimes: imposing the existence of a Killing-Yano tensor subject to
complementary algebraic restrictions; in terms of the projector (or of the
canonical 2-form ) associated with the 2-planes of the warped product. These
planes are principal planes of the Weyl and/or Ricci tensors and can be
explicitly obtained from them. Therefore, we obtain the necessary and
sufficient (local) conditions for a metric tensor to be a 2+2 warped product.
These conditions exclusively involve explicit concomitants of the Riemann
tensor. We present a similar analysis for the conformally 2+2 product
spacetimes and give an invariant classification of them. The warped products
correspond to two of these invariant classes. The more degenerate class is the
set of product metrics which are also studied from an invariant point of view.Comment: 18 pages; submitted to Class. Quantum Grav
Rainich theory for type D aligned Einstein-Maxwell solutions
The original Rainich theory for the non-null Einstein-Maxwell solutions
consists of a set of algebraic conditions and the Rainich (differential)
equation. We show here that the subclass of type D aligned solutions can be
characterized just by algebraic restrictions.Comment: 12 pages; v2: appendix with notatio
On the classification of type D spacetimes
We give a classification of the type D spacetimes based on the invariant
differential properties of the Weyl principal structure. Our classification is
established using tensorial invariants of the Weyl tensor and, consequently,
besides its intrinsic nature, it is valid for the whole set of the type D
metrics and it applies on both, vacuum and non-vacuum solutions. We consider
the Cotton-zero type D metrics and we study the classes that are compatible
with this condition. The subfamily of spacetimes with constant argument of the
Weyl eigenvalue is analyzed in more detail by offering a canonical expression
for the metric tensor and by giving a generalization of some results about the
non-existence of purely magnetic solutions. The usefulness of these results is
illustrated in characterizing and classifying a family of Einstein-Maxwell
solutions. Our approach permits us to give intrinsic and explicit conditions
that label every metric, obtaining in this way an operational algorithm to
detect them. In particular a characterization of the Reissner-Nordstr\"{o}m
metric is accomplished.Comment: 29 pages, 0 figure
Two-dimensional approach to relativistic positioning systems
A relativistic positioning system is a physical realization of a coordinate
system consisting in four clocks in arbitrary motion broadcasting their proper
times. The basic elements of the relativistic positioning systems are presented
in the two-dimensional case. This simplified approach allows to explain and to
analyze the properties and interest of these new systems. The positioning
system defined by geodesic emitters in flat metric is developed in detail. The
information that the data generated by a relativistic positioning system give
on the space-time metric interval is analyzed, and the interest of these
results in gravimetry is pointed out.Comment: 11 pages, 5 figures. v2: a brief description of the principal
bibliography has been adde
Vacuum type I spacetimes and aligned Papapetrou fields: symmetries
We analyze type I vacuum solutions admitting an isometry whose Killing
2--form is aligned with a principal bivector of the Weyl tensor, and we show
that these solutions belong to a family of type I metrics which admit a group
of isometries. We give a classification of this family and we study the
Bianchi type for each class. The classes compatible with an aligned Killing
2--form are also determined. The Szekeres-Brans theorem is extended to non
vacuum spacetimes with vanishing Cotton tensor.Comment: 19 pages; a reference adde
On the Weyl transverse frames in type I spacetimes
We apply a covariant and generic procedure to obtain explicit expressions of
the transverse frames that a type I spacetime admits in terms of an arbitrary
initial frame. We also present a simple and general algorithm to obtain the
Weyl scalars , and associated with these
transverse frames. In both cases it is only necessary to choose a particular
root of a cubic expression.Comment: 12 pages, submitted to Gen. Rel. Grav. (6-3-2004
Positioning with stationary emitters in a two-dimensional space-time
The basic elements of the relativistic positioning systems in a
two-dimensional space-time have been introduced in a previous work [Phys. Rev.
D {\bf 73}, 084017 (2006)] where geodesic positioning systems, constituted by
two geodesic emitters, have been considered in a flat space-time. Here, we want
to show in what precise senses positioning systems allow to make {\em
relativistic gravimetry}. For this purpose, we consider stationary positioning
systems, constituted by two uniformly accelerated emitters separated by a
constant distance, in two different situations: absence of gravitational field
(Minkowski plane) and presence of a gravitational mass (Schwarzschild plane).
The physical coordinate system constituted by the electromagnetic signals
broadcasting the proper time of the emitters are the so called {\em emission
coordinates}, and we show that, in such emission coordinates, the trajectories
of the emitters in both situations, absence and presence of a gravitational
field, are identical. The interesting point is that, in spite of this fact,
particular additional information on the system or on the user allows not only
to distinguish both space-times, but also to complete the dynamical description
of emitters and user and even to measure the mass of the gravitational field.
The precise information under which these dynamical and gravimetric results may
be obtained is carefully pointed out.Comment: 14 pages; 5 figure
What can Simbol-X do for gamma-ray binaries?
Gamma-ray binaries have been uncovered as a new class of Galactic objects in
the very high energy sky (> 100 GeV). The three systems known today have hard
X-ray spectra (photon index ~ 1.5), extended radio emission and a high
luminosity in gamma-rays. Recent monitoring campaigns of LSI +61 303 in X-rays
have confirmed variability in these systems and revealed a spectral hardening
with increasing flux. In a generic one-zone leptonic model, the cooling of
relativistic electrons accounts for the main spectral and temporal features
observed at high energy. Persistent hard X-ray emission is expected to extend
well beyond 10 keV. We explain how Simbol-X will constrain the existing models
in connection with Fermi Space Telescope measurements. Because of its
unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the
discovery of new gamma-ray binaries, giving new insights into the evolution of
compact binaries.Comment: 4 pages, 1 figure, Proceedings of the 2nd International Simbol-X
symposium held in Paris, 2-5 December 200
On the invariant symmetries of the -metrics
We analyze the symmetries and other invariant qualities of the
-metrics (type D aligned Einstein Maxwell solutions with
cosmological constant whose Debever null principal directions determine
shear-free geodesic null congruences). We recover some properties and deduce
new ones about their isometry group and about their quadratic first integrals
of the geodesic equation, and we analyze when these invariant symmetries
characterize the family of metrics. We show that the subfamily of the Kerr-NUT
solutions are those admitting a Papapetrou field aligned with the Weyl tensor.Comment: 18 pages; v2: minor change
Positioning systems in Minkowski space-time: from emission to inertial coordinates
The coordinate transformation between emission coordinates and inertial
coordinates in Minkowski space-time is obtained for arbitrary configurations of
the emitters. It appears that a positioning system always generates two
different coordinate domains, namely, the front and the back emission
coordinate domains. For both domains, the corresponding covariant expression of
the transformation is explicitly given in terms of the emitter world-lines.
This task requires the notion of orientation of an emitter configuration. The
orientation is shown to be computable from the emission coordinates for the
users of a `central' region of the front emission coordinate domain. Other
space-time regions associated with the emission coordinates are also outlined.Comment: 20 pages; 1 figur
- …