82 research outputs found

    Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae

    Get PDF
    Several mutants of the Bacillus thuringiensis Cry1Ca toxin affected with regard to specific activity towards Spodoptera exigua were studied. Alanine was used to replace single residues in loops 2 and 3 of domain II (mutant pPB19) and to replace residues 541– 544 in domain III (mutant pPB20). Additionally, a Cry1Ca mutant combining all mutations was constructed (mutant pPB21). Toxicity assays showed a marked decrease in toxicity against S. exigua for all mutants, while they retained their activity against Manduca sexta, confirming the importance of these residues in determining insect specificity. Parameters for binding to the specific receptors in BBMV (brush border membrane vesicles) of S. exigua were determined for all toxins. Compared with Cry1Ca, the affinity of mutant pPB19 was slightly affected (2-fold lower), whereas the affinity of the mutants with an altered domain III (pPB20 and pPB21) was approx. 8-fold lower. Activation of Cry1Ca protoxin by incubation with S. exigua or M. sexta BBMV revealed the transient formation of an oligomeric form of Cry1Ca. The presence of this oligomeric form was tested in the activation of the different Cry1Ca mutants, and we found that those mutated in domain II (pPB19 and pPB21) could not generate the oligomeric form when activated by S. exigua BBMV. In contrast, when oligomerization was tested using BBMV prepared from M. sexta, all of the Cry1Ca mutants showed the formation of a similar oligomeric form as did the wild-type toxin. Our results show how modification of insect specificity can be achieved by manipulation of different parts of the toxin structure involved in different steps of the mode of action of B. thuringiensis [email protected]; [email protected]

    Distribution and speciation of Ni in sepiolite-falcondoite- type 'garnierite' by EXAFS

    Full text link
    Ni-laterites represent one of the main Ni sources worldwide, with about 40% of the annual production (Gleeson et al., 2003). A problem in laterites is to find a reliable system to control the exact partitioning of Ni among the different minerals in the lateritic profile, because laterite profiles are generally constituted by fine-grained minerals. The determination of Ni-sorption mechanisms during the process of lateritization arises as a very important target from both the mining and environmental point of view (e.g. RoquéRosell et al., 2010)

    Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

    Get PDF
    Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentariâ„¢, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentariâ„¢, suggesting a permanent activation of the response to Xentariâ„¢ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentariâ„¢ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentariâ„¢, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae

    Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

    Get PDF
    Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Feoxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly

    Tres generaciones de serpentina en el perfil laterítico niquelífero del Ne de Cuba)

    Get PDF
    Los yacimientos lateríticos de Ni-Co producen actualmente alrededor del 40% del Ni mundial. Sin embargo, el conocimiento sobre la distribución de Ni en las distintas fases minerales presentes en estos depósitos es sólo a un nivel muy genérico y de poco detalle composicional y estructural

    Geochemistry and mineralogy of the clay-type Ni-laterite de-posit of San Felipe (Camagüey, Cuba)

    Full text link
    The Ni-laterite deposit at the San Felipe plateau, located 30 km northwest of Camagüey, in central Cuba, is the best example of a clay-type deposit in the Caribbean region. San Felipe resulted from the weathering of mantle peridotites of the Cretaceous Camagüey ophiolites. In this study, a geochemical and mineralogical characterization of two profiles (83 and 84) from the San Felipe deposit has been performed by XRF, ICP-MS, quantitative XRPD, oriented aggregate mount XRD, SEM, FE-SEM, and EMPA. Core 83, with a length of 23 m and drilled in the central part of the plateau, presents a notable concentration of cryptocrystalline quartz fragments and a rather poor content of NiO, averaging 0.87 wt.%. Core 84, which is 12 m long and drilled at the border of the plateau, lacks silica fragments and presents a higher NiO content, averaging 1.79 wt.%. The smectite structural formulae reveal that they evolve from trioctahedral to dioctahedral towards the top of the laterite profiles. Quantitative XRD analyses indicate that smectite is a dominant Ni-bearing phase, accompanied by serpentine and minor chlorite. Serpentine, as smectite, is enriched in the less soluble elements Fe3+, Al, and Ni towards the top of the profiles. Core 83 seems to have been affected by collapses and replenishments, whereas core 84 may have remained undisturbed

    Garnierites and garnierites: Textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic

    Get PDF
    Garnierites (Ni-Mg-bearing phyllosilicates) are significant ore minerals in Ni-laterites of the hydrous silicate-type. In the Falcondo Ni-laterite deposit (Dominican Republic), garnierites are found within the saprolite horizon mainly as fracture-fillings and thin coatings on joints. Field observations indicate an important role of active brittle tectonics during garnierite precipitation. Different greenish colours and textures can be distinguished, which correspond to different mineral phases, defined according to X-ray diffraction (XRD) and electron microprobe (EMP) analyses: a) talc-like (10 Å-type), b) serpentine-like (7 Å-type), c) a mixture of talc- and serpentine-like, and d) sepiolite-like types. Compositional data indicate continuous Mg-Ni solid solution along the joins lizardite-népouite (serpentine-like), kerolite-pimelite (talc-like) and sepiolite-falcondoite (sepiolite-like). In general, talc-like garnierite is dominant in Falcondo Ni-laterite and displays higher Ni contents than serpentine-like garnierites. EMP analyses showing deviations from the stoichiometric Mg-Ni solid solutions of serpentine and talc are best explained by talc- and serpentine-like mixing at the nanoscale. A detailed textural study by means of quantified X-ray element imaging provides a wealth of new information about the relationships between textural position, sequence of crystallization and mineral composition of the studied garnierite samples. These results indicate several stages of growth with variable Ni content, pointing to recurrent changes in the physicalchemical conditions during garnierite precipitation. In addition, our detailed mineralogical study of the Falcondo garnierites revealed that the different types identified have characteristic H2O content and SiO2/MgO ratios, which play important roles during the pyrometallurgy process

    Garnierite Mineralization from Falcondo Ni-Laterite Deposit (Dominican Republic)

    Get PDF
    Mine geologists use the term "garnierite" for the green Ni-rich silicate minerals that occur in many Ni-laterite deposits. However, garnierite is not a mineral species recognized by the Commission on New Mineral and Mineral Names (CNMMN). Actually, garnierite is a general name for the NiMg hydrosilicates that usually occur as an intimate mixture that commonly includes two or more of the following minerals: serpentine, talc, sepiolite, smectite, and chlorite (e.g. Brindley and Hang, 1973; Springer, 1974; Brindley et al., 1979; Gleeson et al., 2004)

    Minerales de Mn-Co-Ni en las lateritas De Cuba oriental: resultados preliminares

    Get PDF
    En los yacimientos de lateritas niquelíferas, el Ni y Co pueden ser incorporados en óxidos e hidróxido s de Mn, donde han precipitados mediante reacciones redox (Elias et al., 1981). Además de asbolanas (ricas en Ni y ricas en Co), otros minerales que contienen Co son heterogenita y litioforita (Chukhrov et al., 1 983; Manceau et al., 1987; Llorca y Monchoux, 1991)
    • …
    corecore