230 research outputs found

    Patterns of tuberculosis in the central nervous system

    Get PDF
    Tuberculous involvement of central nervous system (CNS), although not very frequent, results in severe morbidity. Tuberculosis (TB) is endemic in developing countries but even in developed countries, after an initial decline up until 1980’s, incidence of TB is on the rise. The AIDS epidemic, emergence of multi-drug resistant strains and immigration of people from endemic areas are some of the factors significantly contributing to this increase. Consequently, the burden of central nervous system tuberculosis has increased significantly worldwide

    Rotational Spectrum Of Tryptophan

    Get PDF
    The rotational spectrum of the natural amino acid tryptophan has been observed using a recently constructed LA-MB-FTMW spectrometer, specifically designed to optimize the detection of heavier molecules at a lower frequency range. Independent analyses of the rotational spectra of individual conformers have conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The experimental values of the 14^{14}N nuclear quadrupole coupling constants have been found capital in the discrimination of the conformers. Both observed conformers are stabilized by a O-H\cdotsN hydrogen bond in the side chain and a N–H\cdotsπ\pi interaction forming a chain that reinforces the strength of hydrogen bonds through cooperative effects

    Neuroprotective activity of ursodeoxycholic acid in CHMP2B Intron5 models of frontotemporal dementia

    Get PDF
    Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. It represents part of the FTD-Amyotrophic Lateral Sclerosis (ALS) spectrum, a continuum of genetically and pathologically overlapping disorders. FTD-causing mutations in CHMP2B, a gene encoding a core component of the heteromeric ESCRT-III Complex, lead to perturbed endosomal-lysosomal and autophagic trafficking with impaired proteostasis. While CHMP2B mutations are rare, dysfunctional endosomal-lysosomal signalling is common across the FTD-ALS spectrum. Using our established Drosophila and mammalian models of CHMP2BIntron5 induced FTD we demonstrate that the FDA-approved compound Ursodeoxycholic Acid (UDCA) conveys neuroprotection, downstream of endosomal-lysosomal dysfunction in both Drosophila and primary mammalian neurons. UDCA exhibited a dose dependent rescue of neuronal structure and function in Drosophila pan-neuronally expressing CHMP2BIntron5. Rescue of CHMP2BIntron5 dependent dendritic collapse and apoptosis with UDCA in rat primary neurons was also observed. UDCA failed to ameliorate aberrant accumulation of endosomal and autophagic organelles or ubiquitinated neuronal inclusions in both models. We demonstrate the neuroprotective activity of UDCA downstream of endosomal-lysosomal and autophagic dysfunction, delineating the molecular mode of action of UDCA and highlighting its potential as a therapeutic for the treatment of FTD-ALS spectrum disorders

    TBK1: a new player in ALS linking autophagy and neuroinflammation.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS

    Therapeutic targeting of autophagy in neurodegenerative and infectious diseases.

    Get PDF
    Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating.We are grateful to the Wellcome Trust (095317/Z/11/Z Principal Research Fellowship to D.C. Rubinsztein and strategic award 100140), the National Institute for Health Research Biomedical Research Unit in Dementia at Addenbrooke’s Hospital (D.C. Rubinsztein), and the National Institutes of Health (AI042999 and AI111935; V. Deretic) for funding our work. D.C. Rubinsztein has received grant funding from MedImmune and is a scientific advisor for E3Bio and Bioblast.This is the final version. It was first published by Rockefeller University Press at http://jem.rupress.org/content/early/2015/06/17/jem.20150956.full

    Autophagy Induction as a Therapeutic Strategy for Neurodegenerative Diseases.

    Get PDF
    Autophagy is a major, conserved cellular pathway by which cells deliver cytoplasmic contents to lysosomes for degradation. Genetic studies have revealed extensive links between autophagy and neurodegenerative disease, and disruptions to autophagy may contribute to pathology in some cases. Autophagy degrades many of the toxic, aggregate-prone proteins responsible for such diseases, including mutant huntingtin (mHTT), alpha-synuclein (α-syn), tau, and others, raising the possibility that autophagy upregulation may help to reduce levels of toxic protein species, and thereby alleviate disease. This review examines autophagy induction as a potential therapy in several neurodegenerative diseases-Alzheimer's disease, Parkinson's disease, polyglutamine diseases, and amyotrophic lateral sclerosis (ALS). Evidence in cells and in vivo demonstrates promising results in many disease models, in which autophagy upregulation is able to reduce the levels of toxic proteins, ameliorate signs of disease, and delay disease progression. However, the effective therapeutic use of autophagy induction requires detailed knowledge of how the disease affects the autophagy-lysosome pathway, as activating autophagy when the pathway cannot go to completion (e.g., when lysosomal degradation is impaired) may instead exacerbate disease in some cases. Investigating the interactions between autophagy and disease pathogenesis is thus a critical area for further research

    Clinical and Genetic Advances in Paget’s Disease of Bone: a Review

    Get PDF

    Neurodegenerative Diseases and Autophagy

    Get PDF
    Most neurodegenerative diseases are characterized by the accumulation of aggregated proteins within neurons. These aggregate-prone proteins cause toxicity, a phenomenon that is further exacerbated when there is defective protein clearance. Autophagy is an intracellular clearance pathway that can clear these protein aggregates and has been shown to be beneficial in the treatment of neurodegenerative diseases in a variety of model systems. Here, we introduce the key components of the autophagy machinery and signaling pathways that control this process and discuss the evidence that autophagic flux may be impaired and therefore a contributing factor in neurodegenerative disease pathogenesis. Finally, we review the use of autophagy upregulation as a therapeutic strategy to treat neurodegenerative disorders

    The genetics and neuropathology of frontotemporal lobar degeneration

    Get PDF
    Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of disorders characterized by disturbances of behavior and personality and different types of language impairment with or without concomitant features of motor neuron disease or parkinsonism. FTLD is characterized by atrophy of the frontal and anterior temporal brain lobes. Detailed neuropathological studies have elicited proteinopathies defined by inclusions of hyperphosphorylated microtubule-associated protein tau, TAR DNA-binding protein TDP-43, fused-in-sarcoma or yet unidentified proteins in affected brain regions. Rather than the type of proteinopathy, the site of neurodegeneration correlates relatively well with the clinical presentation of FTLD. Molecular genetic studies identified five disease genes, of which the gene encoding the tau protein (MAPT), the growth factor precursor gene granulin (GRN), and C9orf72 with unknown function are most frequently mutated. Rare mutations were also identified in the genes encoding valosin-containing protein (VCP) and charged multivesicular body protein 2B (CHMP2B). These genes are good markers to distinguish underlying neuropathological phenotypes. Due to the complex landscape of FTLD diseases, combined characterization of clinical, imaging, biological and genetic biomarkers is essential to establish a detailed diagnosis. Although major progress has been made in FTLD research in recent years, further studies are needed to completely map out and correlate the clinical, pathological and genetic entities, and to understand the underlying disease mechanisms. In this review, we summarize the current state of the rapidly progressing field of genetic, neuropathological and clinical research of this intriguing condition

    UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration

    Get PDF
    Neurodegenerative diseases are a leading cause of disability and early death. A common feature of these conditions is disruption of protein homeostasis. Ubiquitin-like modifier activating enzyme 1 (UBA1), the E1 ubiquitin-activating enzyme, sits at the apex of the ubiquitin cascade and represents an important regulator of cellular protein homeostasis. Critical contributions of UBA1-dependent pathways to the regulation of homeostasis and degeneration in the nervous system are emerging, including specific disruption of UBA1 in spinal muscular atrophy (SMA) and Huntington's disease (HD). In this review we discuss recent findings that put UBA1 at the centre of cellular homeostasis and neurodegeneration, highlighting the potential for UBA1 to act as a promising therapeutic target for a range of neurodegenerative diseases
    corecore