26 research outputs found

    Decision tree for accurate infection timing in individuals newly diagnosed with HIV-1 infection

    Get PDF
    Background: There is today no gold standard method to accurately define the time passed since infection at HIV diagnosis. Infection timing and incidence measurement is however essential to better monitor the dynamics of local epidemics and the effect of prevention initiatives. Methods: Three methods for infection timing were evaluated using 237 serial samples from documented seroconversions and 566 cross sectional samples from newly diagnosed patients: identification of antibodies against the HIV p31 protein in INNO-LIA, SediaTM BED CEIA and SediaTM LAg-Avidity EIA. A multi-assay decision tree for infection timing was developed. Results: Clear differences in recency window between BED CEIA, LAg-Avidity EIA and p31 antibody presence were observed with a switch from recent to long term infection a median of 169.5, 108.0 and 64.5 days after collection of the pre-seroconversion sample respectively. BED showed high reliability for identification of long term infections while LAg-Avidity is highly accurate for identification of recent infections. Using BED as initial assay to identify the long term infections and LAg-Avidity as a confirmatory assay for those classified as recent infection by BED, explores the strengths of both while reduces the workload. The short recency window of p31 antibodies allows to discriminate very early from early infections based on this marker. BED recent infection results not confirmed by LAg-Avidity are considered to reflect a period more distant from the infection time. False recency predictions in this group can be minimized by elimination of patients with a CD4 count of less than 100 cells/mm3 or without no p31 antibodies. For 566 cross sectional sample the outcome of the decision tree confirmed the infection timing based on the results of all 3 markers but reduced the overall cost from 13.2 USD to 5.2 USD per sample. Conclusions: A step-wise multi assay decision tree allows accurate timing of the HIV infection at diagnosis at affordable effort and cost and can be an important new tool in studies analyzing the dynamics of local epidemics or the effects of prevention strategies

    Earlier initiation of antiretroviral treatment coincides with an initial control of the HIV-1 sub-subtype F1 outbreak among men-having-sex-with-men in Flanders, Belgium

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) non-B subtype infections occurred in Belgium since the 1980s, mainly amongst migrants and heterosexuals, whereas subtype B predominated in men-having-sex-with-men (MSM). In the last decade, the diagnosis of F1 sub-subtype in particular has increased substantially, which prompted us to perform a detailed reconstruction of its epidemiological history. To this purpose, the Belgian AIDS Reference Laboratories collected HIV-1 pol sequences from all sub-subtype F1-infected patients for whom genotypic drug resistance testing was requested as part of routine clinical follow-up. This data was complemented with HIV-1 pol sequences from countries with a high burden of F1 infections or a potential role in the global origin of sub-subtype F1. The molecular epidemiology of the Belgian subtype F1 epidemic was investigated using Bayesian phylogenetic inference and transmission dynamics were characterized based on birth-death models. F1 sequences were retained from 297 patients diagnosed and linked to care in Belgium between 1988 and 2015. Phylogenetic inference indicated that among the 297 Belgian F1 sequences, 191 belonged to a monophyletic group that mainly contained sequences from people likely infected in Belgium (OR 26.67, 95% CI 9.59-74.15), diagnosed in Flanders (OR 7.28, 95% CI 4.23-12.53), diagnosed at a recent stage of infection (OR 7.19, 95% CI 2.88-17.95) or declared to be MSM (OR 34.8, 95% CI 16.0-75.6). Together with a Spanish clade, this Belgian clade was embedded in the genetic diversity of Brazilian subtype F1 strains and most probably emerged after one or only a few migration events from Brazil to the European continent before 2002. The origin of the Belgian outbreak was dated back to 2002 (95% higher posterior density 2000-2004) and birth-death models suggested that its extensive growth had been controlled (Re < 1) by 2012, coinciding with a time period where delay in antiretroviral treatment initiation substantially declined. In conclusion, phylogenetic reconstruction of the Belgian HIV-1 sub-subtype F1 epidemic illustrates the introduction and substantial dissemination of viral strains in a geographically restricted risk group that was most likely controlled by effective treatment as prevention.publishersversionpublishe

    Effect of Genital Sampling Site on the Detection and Quantification of Ureaplasma Species with Quantitative Polymerase Chain Reaction during Pregnancy

    No full text
    Objective. This study aimed to compare the qualitative and quantitative reproducibility of quantitative PCR (qPCR) for Ureaplasma species (Ureaplasma spp.) throughout pregnancy and according to the genital sampling site. Study Design. Between 5 and 14 weeks of gestation (T1), vaginal, fornix, and two cervical samples were taken. Sampling was repeated during the 2nd (T2) and 3rd (T3) trimester in randomly selected T1 positive and negative women. Qualitative and quantitative reproducibility were evaluated using, respectively, Cohen&apos;s kappa ( ) and interclass correlation coefficients (ICC) and repeated measures ANOVA on the log-transformed mean number of DNA copies for each sampling site. Results. During T1, 51/127 women were positive for U. parvum and 8 for U. urealyticum (4 patients for both). Sampling was repeated for 44/55 women at T2 and/or T3; 43 (97.7%) remained positive at the three timepoints. ranged between 0.83 and 0.95 and the ICC for cervical samples was 0.86. Conclusions. Colonization by Ureaplasma spp. seems to be very constant during pregnancy and vaginal samples have the highest detection rate

    Effect of Genital Sampling Site on the Detection and Quantification of Ureaplasma Species with Quantitative Polymerase Chain Reaction during Pregnancy

    No full text
    Objective. This study aimed to compare the qualitative and quantitative reproducibility of quantitative PCR (qPCR) for Ureaplasma species (Ureaplasma spp.) throughout pregnancy and according to the genital sampling site. Study Design. Between 5 and 14 weeks of gestation (T1), vaginal, fornix, and two cervical samples were taken. Sampling was repeated during the 2nd (T2) and 3rd (T3) trimester in randomly selected T1 positive and negative women. Qualitative and quantitative reproducibility were evaluated using, respectively, Cohen’s kappa (κ) and interclass correlation coefficients (ICC) and repeated measures ANOVA on the log-transformed mean number of DNA copies for each sampling site. Results. During T1, 51/127 women were positive for U. parvum and 8 for U. urealyticum (4 patients for both). Sampling was repeated for 44/55 women at T2 and/or T3; 43 (97.7%) remained positive at the three timepoints. κ ranged between 0.83 and 0.95 and the ICC for cervical samples was 0.86. Conclusions. Colonization by Ureaplasma spp. seems to be very constant during pregnancy and vaginal samples have the highest detection rate

    Prevalence and Evolution of Transmitted Human Immunodeficiency Virus Drug Resistance in Belgium between 2013 and 2019

    No full text
    Background: To assess the prevalence and evolution of transmitted drug resistance (TDR) in Belgium, a total of 3708 baseline human immunodeficiency virus (HIV)-1 polymerase sequences from patients diagnosed between 2013 and 2019 were analyzed. Methods: Protease and reverse-transcriptase HIV-1 sequences were collected from the 7 national Aids Reference Laboratories. Subtype determination and drug resistance scoring were performed using the Stanford HIV Drug Resistance Database. Trends over time were assessed using linear regression, and the maximum likelihood approach was used for phylogenetic analysis. Results: A total of 17.9% of the patients showed evidence of TDR resulting in at least low-level resistance to 1 drug (Stanford score ≥15). If only the high-level mutations (Stanford score ≥60) were considered, TDR prevalence dropped to 6.3%. The majority of observed resistance mutations impacted the sensitivity for nonnucleoside reverse-transcriptase inhibitors (NNRTIs) (11.4%), followed by nucleoside reverse-transcriptase inhibitors (6.2%) and protease inhibitors (2.4%). Multiclass resistance was observed in 2.4%. Clustered onward transmission was evidenced for 257 of 635 patients (40.5%), spread over 25 phylogenetic clusters. Conclusions: The TDR prevalence remained stable between 2013 and 2019 and is comparable to the prevalence in other Western European countries. The high frequency of NNRTI mutations requires special attention and follow-up. Phylogenetic analysis provided evidence for local clustered onward transmission of some frequently detected mutations.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Healthcare-Associated SARS-CoV-2 Reinfection after 3 Months with a Phylogenetically Distinct Omicron Variant: A Case Report

    No full text
    This case report describes a 60-year-old female patient suffering from systemic sclerosis, for which she received immunomodulatory drugs. Her first SARS-CoV-2-positive nasopharyngeal sample was obtained in the emergency department, on 31 January 2022. Whole genome sequencing confirmed infection with Omicron BA.1.1. Her hospital stay was long and punctuated by many complications, including admission to the intensive care unit. At the beginning of April 2022, she started complaining of increased coughing, for which another SARS-CoV-2 RT-qPCR test was performed. The latter nasopharyngeal swab showed a strongly positive result. To support the theory of healthcare-associated reinfection, whole genome sequencing was performed and confirmed reinfection with Omicron BA.2. Since this patient was one of ten positive cases in this particular ward, a hospital outbreak investigation was performed. Whole genome sequencing data were available for five of these ten patients and showed a cluster of four patients with ≤2 small nucleotide polymorphisms difference

    High frequency of new recombinant forms in HIV-1 transmission networks demonstrated by full genome sequencing

    No full text
    The HIV-1 epidemic in Belgium is primarily driven by MSM. In this patient population subtype B predominates but an increasing presence of non-B subtypes has been reported. We aimed to define to what extent the increasing subtype heterogeneity in a high at risk population induces the formation and spread of new recombinant forms. The study focused on transmission networks that reflect the local transmission to an important extent. One hundred and five HIV-1 transmission clusters were identified after phylogenetic analysis of 2849 HIV-1 pol sequences generated for the purpose of baseline drug resistance testing between 2013 and 2017. Of these 105 clusters, 62 extended in size during the last two years and were therefore considered as representing ongoing transmission. These 62 clusters included 774 patients in total. From each cluster between 1 and 3 representative patients were selected for near full-length viral genome sequencing. In total, the full genome sequence of 101 patients was generated. Indications for the presence of a new recombinant form were found for 10 clusters. These 10 clusters represented 105 patients or 13.6% of the patients covered by the study. The findings clearly show that new recombinant strains highly contribute to local transmission, even in an epidemic that is largely MSM and subtype B driven. This is an evolution that needs to be monitored as reshuffling of genome fragments through recombination may influence the transmissibility of the virus and the pathology of the infection. In addition, important changes in the sequence of the viral genome may challenge the performance of tests used for diagnosis, patient monitoring and drug resistance analysis.status: publishe

    High frequency of new recombinant forms in HIV-1 transmission networks demonstrated by full genome sequencing

    No full text
    The HIV-1 epidemic in Belgium is primarily driven by MSM. In this patient population subtype B predominates but an increasing presence of non-B subtypes has been reported. We aimed to define to what extent the increasing subtype heterogeneity in a high at risk population induces the formation and spread of new recombinant forms. The study focused on transmission networks that reflect the local transmission to an important extent. One hundred and five HIV-1 transmission clusters were identified after phylogenetic analysis of 2849 HIV-1 pol sequences generated for the purpose of baseline drug resistance testing between 2013 and 2017. Of these 105 clusters, 62 extended in size during the last two years and were therefore considered as representing ongoing transmission. These 62 clusters included 774 patients in total. From each cluster between 1 and 3 representative patients were selected for near full-length viral genome sequencing. In total, the full genome sequence of 101 patients was generated. Indications for the presence of a new recombinant form were found for 10 clusters. These 10 clusters represented 105 patients or 13.6% of the patients covered by the study. The findings clearly show that new recombinant strains highly contribute to local transmission, even in an epidemic that is largely MSM and subtype B driven. This is an evolution that needs to be monitored as reshuffiing of genome fragments through recombination may influence the transmissibility of the virus and the pathology of the infection. In addition, important changes in the sequence of the viral genome may challenge the performance of tests used for diagnosis, patient monitoring and drug resistance analysis

    Exploring HIV-1 transmission dynamics by combining phylogenetic analysis and infection timing

    Get PDF
    HIV-1 pol sequences obtained through baseline drug resistance testing of patients newly diagnosed between 2013 and 2017 were analyzed for genetic similarity. For 927 patients the information on genetic similarity was combined with demographic data and with information on the recency of infection. Overall, 48.3% of the patients were genetically linked with 11.4% belonging to a pair and 36.9% involved in a cluster of ≥3 members. The percentage of early diagnosed (≤4 months after infection) was 28.6%. Patients of Belgian origin were more frequently involved in transmission clusters (49.7% compared to 15.3%) and diagnosed earlier (37.4% compared to 12.2%) than patients of Sub-Saharan African origin. Of the infections reported to be locally acquired, 69.5% were linked (14.1% paired and 55.4% in a cluster). Equal parts of early and late diagnosed individuals (59.9% and 52.4%, respectively) were involved in clusters. The identification of a genetically linked individual for the majority of locally infected patients suggests a high rate of diagnosis in this population. Diagnosis however is often delayed for >4 months after infection increasing the opportunities for onward transmission. Prevention of local infection should focus on earlier diagnosis and protection of the still uninfected members of sexual networks with human immunodeficiency virus (HIV)-infected members.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore