144 research outputs found

    Gene-Gene Interactions in the Folate Metabolic Pathway and the Risk of Conotruncal Heart Defects

    Get PDF
    Conotruncal and related heart defects (CTRD) are common, complex malformations. Although there are few established risk factors, there is evidence that genetic variation in the folate metabolic pathway influences CTRD risk. This study was undertaken to assess the association between inherited (i.e., case) and maternal gene-gene interactions in this pathway and the risk of CTRD. Case-parent triads (n = 727), ascertained from the Children's Hospital of Philadelphia, were genotyped for ten functional variants of nine folate metabolic genes. Analyses of inherited genotypes were consistent with the previously reported association between MTHFR A1298C and CTRD (adjusted P = .02), but provided no evidence that CTRD was associated with inherited gene-gene interactions. Analyses of the maternal genotypes provided evidence of a MTHFR C677T/CBS 844ins68 interaction and CTRD risk (unadjusted P = .02). This association is consistent with the effects of this genotype combination on folate-homocysteine biochemistry but remains to be confirmed in independent study populations

    Gene-based genome-wide association studies and meta-analyses of conotruncal heart defects.

    Get PDF
    Conotruncal heart defects (CTDs) are among the most common and severe groups of congenital heart defects. Despite evidence of an inherited genetic contribution to CTDs, little is known about the specific genes that contribute to the development of CTDs. We performed gene-based genome-wide analyses using microarray-genotyped and imputed common and rare variants data from two large studies of CTDs in the United States. We performed two case-parent trio analyses (N = 640 and 317 trios), using an extension of the family-based multi-marker association test, and two case-control analyses (N = 482 and 406 patients and comparable numbers of controls), using a sequence kernel association test. We also undertook two meta-analyses to combine the results from the analyses that used the same approach (i.e. family-based or case-control). To our knowledge, these analyses are the first reported gene-based, genome-wide association studies of CTDs. Based on our findings, we propose eight CTD candidate genes (ARF5, EIF4E, KPNA1, MAP4K3, MBNL1, NCAPG, NDFUS1 and PSMG3). Four of these genes (ARF5, KPNA1, NDUFS1 and PSMG3) have not been previously associated with normal or abnormal heart development. In addition, our analyses provide additional evidence that genes involved in chromatin-modification and in ribonucleic acid splicing are associated with congenital heart defects

    Association of chromosome 22q11 deletion with isolated anomalies of aortic arch laterality and branching

    Get PDF
    AbstractOBJECTIVESThe purpose of this study was to determine the frequency of chromosome 22q11 deletions in patients with isolated anomalies of the aortic arch and its branches.BACKGROUNDChromosome 22q11 deletions are often present in patients with certain forms of congenital cardiovascular disease, including tetralogy of Fallot, truncus arteriosus and interruption of the aortic arch. Among patients with these anomalies, chromosome 22q11 deletion is more common in those with abnormal aortic arch laterality or branching.METHODSWe studied 66 patients with isolated anomalies of the aortic arch and no associated intracardiac defects for deletions within chromosome 22q11, using fluorescence in situ hybridization with the cosmid probe N25 (D22S75). Arch anomalies included: double aortic arch (n = 22); right aortic arch with aberrant left subclavian artery (n = 28); right aortic arch with mirror-image branching and a vascular ring formed by a left-sided ductus from the descending aorta (n = 5); right aortic arch with mirror-image branching and no vascular ring (n = 4); and left aortic arch with aberrant right subclavian artery (n = 7). In addition, four patients had a cervical aortic arch, four had aortic coarctation and six had hypoplasia/atresia of the proximal pulmonary arteries.RESULTSChromosome 22q11 deletions were found in 16 patients (24%) across the full spectrum of anomalies studied. Among the morphologic variables analyzed, only hypoplasia/atresia of the proximal pulmonary arteries correlated with the deletion (p = 0.03). Among patients with a double arch, the frequency of chromosome 22q11 deletion was higher in those with an atretic minor arch than it was in those with a patent minor arch (p = 0.02).CONCLUSIONSChromosome 22q11 deletion is associated with isolated anomalies of laterality or branching of the aortic arch in 24% of cases in our series. These findings should alert the clinician to consider deletion screening in patients with isolated anomalies of the aortic arch

    Frequency of 22q11 deletions in patients with conotruncal defects

    Get PDF
    AbstractObjectives. This study was designed to determine the frequency of 22q11 deletions in a large, prospectively ascertained sample of patients with conotruncal defects and to evaluate the deletion frequency when additional cardiac findings are also considered.Background. Chromosome 22q11 deletions are present in the majority of patients with DiGeorge, velocardiofacial and conotruncal anomaly face syndromes in which conotruncal defects are a cardinal feature. Previous studies suggest that a substantial number of patients with congenital heart disease have a 22q11 deletion.Methods. Two hundred fifty-one patients with conotruncal defects were prospectively enrolled into the study and screened for the presence of a 22q11 deletion.Results. Deletions were found in 50.0% with interrupted aortic arch (IAA), 34.5% of patients with truncus arteriosus (TA), and 15.9% with tetralogy of Fallot (TOF). Two of 6 patients with a posterior malalignment type ventricular septal defect (PMVSD) and only 1 of 20 patients with double outlet right ventricle were found to have a 22q11 deletion. None of the 45 patients with transposition of the great arteries had a deletion. The frequency of 22q11 deletions was higher in patients with anomalies of the pulmonary arteries, aortic arch or its major branches as compared to patients with a normal left aortic arch regardless of intracardiac anatomy.Conclusions. A substantial proportion of patients with IAA, TA, TOF and PMVSD have a deletion of chromosome 22q11. Deletions are more common in patients with aortic arch or vessel anomalies. These results begin to define guidelines for deletion screening of patients with conotruncal defects

    Mutational analysis of the PITX2 coding region revealed no common cause for transposition of the great arteries (dTGA)

    Get PDF
    BACKGROUND: PITX2 is a bicoid-related homeodomain transcription factor that plays an important role in asymmetric cardiogenesis. Loss of function experiments in mice cause severe heart malformations, including transposition of the great arteries (TGA). TGA accounts for 5–7% of all congenital heart diseases affecting 0.2 per 1000 live births, thereby representing the most frequent cyanotic heart defect diagnosed in the neonatal period. METHODS: To address whether altered PITX2 function could also contribute to the formation of dTGA in humans, we screened 96 patients with dTGA by means of dHPLC and direct sequencing for mutations within the PITX2 gene. RESULTS: Several SNPs could be detected, but no stop or frame shift mutation. In particular, we found seven intronic and UTR variants, two silent mutations and two polymorphisms within the coding region. CONCLUSION: As most sequence variants were also found in controls we conclude that mutations in PITX2 are not a common cause of dTGA

    Mechanisms of congenital heart disease caused by NAA15 haploinsufficiency

    Get PDF
    Rationale: NAA15 is a component of the N-terminal (Nt) acetyltransferase complex, NatA. The mechanism by which NAA15 haploinsufficiency causes congenital heart disease (CHD) remains unknown. To better understand molecular processes by which NAA15 haploinsufficiency perturbs cardiac development, we introduced NAA15 variants into human induced pluripotent stem cells (iPSCs) and assessed the consequences of these mutations on RNA and protein expression. Objective: We aim to understand the role of NAA15 haploinsufficiency in cardiac development by investigating proteomic effects on NatA complex activity, and identifying proteins dependent upon a full amount of NAA15. Methods and Results: We introduced heterozygous LoF, compound heterozygous and missense residues (R276W) in iPS cells using CRISPR/Cas9. Haploinsufficient NAA15 iPS cells differentiate into cardiomyocytes, unlike NAA15-null iPS cells, presumably due to altered composition of NatA. Mass spectrometry (MS) analyses reveal ~80% of identified iPS cell NatA targeted proteins displayed partial or complete Nt-acetylation. Between null and haploinsufficient NAA15 cells Nt-acetylation levels of 32 and 9 NatA-specific targeted proteins were reduced, respectively. Similar acetylation loss in few proteins occurred in NAA15 R276W iPSCs. In addition, steady-state protein levels of 562 proteins were altered in both null and haploinsufficient NAA15 cells; eighteen were ribosomal-associated proteins. At least four proteins were encoded by genes known to cause autosomal dominant CHD. Conclusions: These studies define a set of human proteins that requires a full NAA15 complement for normal synthesis and development. A 50% reduction in the amount of NAA15 alters levels of at least 562 proteins and Nt-acetylation of only 9 proteins. One or more modulated proteins are likely responsible for NAA15-haploinsufficiency mediated CHD. Additionally, genetically engineered iPS cells provide a platform for evaluating the consequences of amino acid sequence variants of unknown significance on NAA15 function

    Genotype and Cardiovascular Phenotype Correlations With TBX1 in 1,022 Velo-Cardio-Facial/Digeorge/22q11.2 Deletion Syndrome Patients

    Get PDF
    Haploinsufficiency of TBX1, encoding a T-box transcription factor, is largely responsible for the physical malformations in velo-cardio-facial /DiGeorge/22q11.2 deletion syndrome (22q11DS) patients. Cardiovascular malformations in these patients are highly variable, raising the question as to whether DNA variations in the TBX1 locus on the remaining allele of 22q11.2 could be responsible. To test this, a large sample size is needed. The TBX1 gene was sequenced in 360 consecutive 22q11DS patients. Rare and common variations were identified. We did not detect enrichment in rare SNP (single nucleotide polymorphism) number in those with or without a congenital heart defect. One exception was that there was increased number of very rare SNPs between those with normal heart anatomy compared to those with right-sided aortic arch or persistent truncus arteriosus, suggesting potentially protective roles in the SNPs for these phenotype-enrichment groups. Nine common SNPs (minor allele frequency, MAF \u3e 0.05) were chosen and used to genotype the entire cohort of 1,022 22q11DS subjects. We did not find a correlation between common SNPs or haplotypes and cardiovascular phenotype. This work demonstrates that common DNA variations in TBX1 do not explain variable cardiovascular expression in 22q11DS patients, implicating existence of modifiers in other genes on 22q11.2 or elsewhere in the genome
    corecore