21 research outputs found

    Association analysis of low-phosphorus tolerance in West African pearl millet using DArT markers

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.] is a food security crop in the harshest agricultural regions of the world. While low soil phosphorus (P) availability is a big constraint on its production, especially in West Africa (WA), information on genomic regions responsible for low-P tolerance in pearl millet is generally lacking. We present the first report on genetic polymorphisms underlying several plant P-related parameters, flowering time (FLO) and grain yield (GY) under P-limiting conditions based on 285 diversity array technology markers and 151 West African pearl millet inbred lines phenotyped in six environments in WA under both high-P and low-P conditions. Nine markers were significantly associated with P-related traits, nine markers were associated with FLO, whereas 13 markers were associated with GY each explaining between 5.5 and 15.9 % of the observed variation. Both constitutive and adaptive associations were observed for FLO and GY, with markers PgPb11603 and PgPb12954 being associated with the most stable effects on FLO and GY, respectively, across locations. There were a few shared polymorphisms between traits, especially P-efficiency-related traits and GY, implying possible colocation of genomic regions responsible for these traits. Our findings help bridge the gap between quantitative and molecular methods of studying complex traits like low-P tolerance in WA. However, validation of these markers is necessary to determine their potential applicability in marker-assisted selection programs targeting low-P environments, which are especially important in WA where resource-poor farmers are expected to be the hardest hit by the approaching global P crisis

    Towards understanding the traits contributing to performance of pearl millet open-pollinated varieties in phosphorus-limited environments of West Africa

    Get PDF
    Aims Pearl millet [Pennisetum glaucum (L.) R. Br.] open-pollinated varieties, which are the predominant cultivars, have never been systematically evaluated for adaptation to low-soil phosphorus (P), a major constraint on pearl millet production in West Africa (WA). Methods We evaluated grain yield (GY), flowering time (FLO), harvest index (HI), and residual grain yields (RGY) of 102 open-pollinated varieties from WA under low-P (−P) and high-P (+P) field conditions in six environments of WA. In addition, PE-related traits of the varieties were evaluated at early growth stage in a pot experiment. Results Significant genetic variation was observed for GY, FLO, HI and PE-related traits. P-efficient varieties had higher yield under −P conditions. Varietal performance under −P varied across environments depending on FLO, relative flowering delay under −P (FD) and RGY measured in the field. Low-P-susceptible varieties had higher FLO, lower HI than low-P-tolerant varieties. Response to direct selection under −P field conditions was 20.1 g m−2, whereas indirect selection response under +P was 16.3 g m−2. Conclusions Selection under −P field conditions while taking into account seasonal variations for FLO, FD and PE is expected to be important for improving GY specifically targeting −P environments in WA

    Data from: Conservation priorities for endangered coastal North African Pennisetum glaucum L. landrace populations as inferred from phylogenetic considerations and population structure analysis

    No full text
    The increasing anthropologic pressure and the modernization of agriculture have led to a forsaking of pearl millet traditional cultivars inducing a progressive loss of the genetic variability encompassed in this locally-adapted germplasm. Imperatively, national efforts based on robust data gleaned from genetic surveys have to be undertaken in order to set up suitable conservation priorities. Inthis study, in addition to the assessment of the genetic diversity and population structure among and within a set of seven pearl millet landrace populations from coastal North Africa, demographic and phylogenetic data, conservation priority scores were calculated according to Vane-Wright et al. (1991). To date, genetic diversity of pearl millet in North Africa is still poorly documented. The present survey reports for the first time the use of highly informative nSSR markers (PIC =0.74) on P. glaucum landraces representative of the Mediterranean coastline of North Africa. A high level of genetic diversity was obtained within the investigated landraces (He=0.80) at the population level. FST, AFC-3D and Bayesian clustering underlined significant differentiation and an apparent genetic structure according to geographical origin. Phylogenetic considerations integrated with demographic and genetic information enabled conclusive inferences of highly prioritized populations for conservation. Populations Haouaria, Hammem Laghzez, Mahdia and Medenine representatives of the main pearl millet growing areas in Tunisia and cultivated in the North African littoral should be strongly recommended for an ex-situ conservation program. Dynamic on-farm conservation method is also required as it allows to the local landraces to evolve in different environments while maintaining their adaptation potentials
    corecore