17 research outputs found

    The Tragedy of a Man Who Cursed: On Leonardo Padura's The Novel of My Life (2002)

    Get PDF
    This article explores how in The Novel of My Life Heredia’s tragedy -that is forced exile- stems from a dynamics between colonialism and culture in Cuba. At the same time, this dynamics reveals the transatlantic concatenations between the imperial politics of Spain and the colonial character of nineteenth-century Cuba. Heredia’s tragedy, I argue, is depicted in Padura’s novel as a consequence of a socio-historical reality in which Heredia’s enlightened, or liberal, ideas about politics and independence where rather “misplaced ideas” in the Cuba of the 1820s. In other words, some of these European liberal ideas became “misplaced ideas” when they were displaced first to the Spanish context, and subsequently to the colonial context in Cuba. The incongruences between the political structures and culture of the Spanish dynastic state and enlightened European ideas reflected themselves on colonial Cuba

    TRAVESÍA DE UNA UTOPÍA ROTA: EKPHRASIS E HISTORIA EN EL HOMBRE QUE AMABA A LOS PERROS DE LEONARDO PADURA

    Get PDF
    N/

    Birth of a Live Cria After Transfer of a Vitrified-Warmed Alpaca (Vicugna pacos) Preimplantation Embryo

    Get PDF
    The alpaca (Vicugna pacos) is an important species for the production of fiber and food. Genetic improvement programs for alpacas have been hindered, however, by the lack of field-practical techniques for artificial insemination and embryo transfer. In particular, successful techniques for the cryopreservation of alpaca preimplantation embryos have not been reported previously. The objective of this study was to develop a field-practical and efficacious technique for cryopreservation of alpaca preimplantation embryos using a modification of a vitrification protocol originally devised for horses and adapted for dromedary camels. Four naturally cycling non-superovulated Huacaya females serving as embryo donors were mated to males of proven fertility. Donors received 30 μg of gonadorelin at the time of breeding, and embryos were non-surgically recovered 7 days after mating. Recovered embryos (n = 4) were placed individually through a series of three vitrification solutions at 20°C (VS1: 1.4 M glycerol; VS2: 1.4 M glycerol + 3.6 M ethylene glycol; VS3: 3.4 M glycerol + 4.6 M ethylene glycol) before loading into an open-pulled straw (OPS) and plunging directly into liquid nitrogen for storage. At warming, each individual embryo was sequentially placed through warming solutions (WS1: 0.5 M galactose at 37°C; WS2: 0.25 M galactose at 20°C), and warmed embryos were incubated at 37°C in 5% CO2 in humidified air for 20–22 h in 1 ml Syngro® holding medium supplemented with 10% (v/v) alpaca serum to perform an initial in vitro assessment of post-warming viability. Embryos whose diameter increased during culture (n = 2) were transferred individually into synchronous recipients, whereas embryos that did not grow (n = 2) were transferred together into a single recipient to perform an in vivo assessment of post-warming viability. Initial pregnancy detection was performed ultrasonographically 29 days post-transfer when fetal heartbeat could be detected, and one of three recipients was pregnant (25% embryo survival rate). On November 13, 2019, the one pregnant recipient delivered what is believed to be the world\u27s first cria produced from a vitrified-warmed alpaca embryo

    Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, central Mozambique

    Get PDF
    The analyses of the stable isotope ratios of carbon (delta C-13), nitrogen (delta N-15), and oxygen (delta O-18) in animal tissues are powerful tools for reconstructing the feeding behavior of individual animals and characterizing trophic interactions in food webs. Of these biomaterials, tooth enamel is the hardest, most mineralized vertebrate tissue and therefore least likely to be affected by chemical alteration (i.e., its isotopic composition can be preserved over millions of years), making it an important and widely available archive for biologists and paleontologists. Here, we present the first combined measurements of delta C-13, delta N-15, and delta O-18 in enamel from the teeth of modern fauna (herbivores, carnivores, and omnivores) from the well-studied ecosystem of Gorongosa National Park (GNP) in central Mozambique. We use two novel methods to produce high-precision stable isotope enamel data: (i) the "oxidation-denitrification method," which permits the measurement of mineral-bound organic nitrogen in tooth enamel (delta N-15(enamel)), which until now, has not been possible due to enamel's low organic content, and (ii) the "cold trap method," which greatly reduces the sample size required for traditional measurements of inorganic delta C-13(enamel) and delta O-18(enamel) (from >= 0.5 to <= 0.1 mg), permitting analysis of small or valuable teeth and high-resolution serial sampling of enamel. The stable isotope results for GNP fauna reveal important ecological information about the trophic level, dietary niche, and resource consumption. delta N-15(enamel) values clearly differentiate trophic level (i.e., carnivore delta N-15(enamel) values are 4.0 parts per thousand higher, on average, than herbivores), delta C-13(enamel) values distinguish C-3 and/or C-4 biomass consumption, and delta O-18(enamel) values reflect local meteoric water (delta O-18(water)) in the park. Analysis of combined carbon, nitrogen, and oxygen stable isotope data permits geochemical separation of grazers, browsers, omnivores, and carnivores according to their isotopic niche, while mixed-feeding herbivores cannot be clearly distinguished from other dietary groups. These results confirm that combined C, N, and O isotope analyses of a single aliquot of tooth enamel can be used to reconstruct diet and trophic niches. Given its resistance to chemical alteration, the analysis of these three isotopes in tooth enamel has a high potential to open new avenues of research in (paleo)ecology and paleontology.info:eu-repo/semantics/publishedVersio

    Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, central Mozambique

    Get PDF
    The analyses of the stable isotope ratios of carbon (δ13C), nitrogen (δ15N), and oxygen (δ18O) in animal tissues are powerful tools for reconstructing the feeding behavior of individual animals and characterizing trophic interactions in food webs. Of these biomaterials, tooth enamel is the hardest, most mineralized vertebrate tissue and therefore least likely to be affected by chemical alteration (i.e., its isotopic composition can be preserved over millions of years), making it an important and widely available archive for biologists and paleontologists. Here, we present the first combined measurements of δ13C, δ15N, and δ18O in enamel from the teeth of modern fauna (herbivores, carnivores, and omnivores) from the well-studied ecosystem of Gorongosa National Park (GNP) in central Mozambique. We use two novel methods to produce high-precision stable isotope enamel data: (i) the “oxidation-denitrification method,” which permits the measurement of mineral-bound organic nitrogen in tooth enamel (δ15Nenamel), which until now, has not been possible due to enamel’s low organic content, and (ii) the “cold trap method,” which greatly reduces the sample size required for traditional measurements of inorganic δ13Cenamel and δ18Oenamel (from ≥0.5 to ≤0.1 mg), permitting analysis of small or valuable teeth and high-resolution serial sampling of enamel. The stable isotope results for GNP fauna reveal important ecological information about the trophic level, dietary niche, and resource consumption. δ15Nenamel values clearly differentiate trophic level (i.e., carnivore δ15Nenamel values are 4.0‰ higher, on average, than herbivores), δ13Cenamel values distinguish C3 and/or C4 biomass consumption, and δ18Oenamel values reflect local meteoric water (δ18Owater) in the park. Analysis of combined carbon, nitrogen, and oxygen stable isotope data permits geochemical separation of grazers, browsers, omnivores, and carnivores according to their isotopic niche, while mixed-feeding herbivores cannot be clearly distinguished from other dietary groups. These results confirm that combined C, N, and O isotope analyses of a single aliquot of tooth enamel can be used to reconstruct diet and trophic niches. Given its resistance to chemical alteration, the analysis of these three isotopes in tooth enamel has a high potential to open new avenues of research in (paleo)ecology and paleontology

    Marginality and the Grotesque in Valle-InclĂĄn's Cara de Plata

    No full text
    Viana de Prior es el nombre que le otorga RamĂłn del Valle InclĂĄn al pueblo en que se desarrollan los eventos de su drama titulado Cara de plata (1922). La primera de las Comedias bĂĄrbaras nos presenta un topĂłnimo inventado caracterizado por su remanentes feudales. Tanto la forma como el contenido de Cara de Plata articulan la crĂ­tica mordaz del autor a la sociedad arcaica y estratificada en la que viviĂł. Esta dinĂĄmica se representa en la obra a travĂŠs de lo grotesco y el uso de Valle InclĂĄn del esperpent

    Pensar en el presente: la memoria y la estetica de lo efimero en el teatro catalan contemporaneo

    Full text link
    THINKING IN THE PRESENT: MEMORY AND THE AESTHETICS OF THE EPHEMERAL IN CONTEMPORARY CATALAN THEATER Jennifer Duprey, Ph.D. Cornell University 2008 In my doctoral dissertation I argue for the need of a historical and political understanding of the thematic centrality of memory and its relation to the concepts of legacy, war, violence and immigration, in contemporary Catalan theater. My study explores how these tropes are interrelated with an aesthetic of the ephemeral that is materialized both in the texts and in their theatrical representations. In this vein, I argue that contemporary Catalan theater addresses the aforementioned concerns in provocative and innovative ways that are relevant for our present. Works of Catalan playwright Josep Maria Benet i Jornet are examined in the first and second chapters of my dissertation. These two chapters explore the notions of modern ruins and legacy and their import to contemporary Catalan culture in the plays Olors and Testament. In my third chapter, I explore the concepts of war and violence, specifically in the context of the Spanish Civil War, and their connections to the manifestations of power and justice in the play Ant?gona by Jordi Coca. The final chapter examines 20th century theories of immigration, multiculturalism and mestizaje, particularly related to Catalonia, in the plays Temptaci? by Carles Batlle and Forasters written by Sergi Belbel. In its conceptual aspects, this study engages with an array of theoretical approaches, from cultural theory to political philosophy, especially with the writings of Walter Benjamin, Hannah Arendt, Simone Weil, Jacques Derrida, Xavier Rubert de Vent?s, Manuel Cruz and Manuel Delgado. It also engages in a dialogue with current critical work on 20th century Spanish Peninsular literature and culture such as the writings of Joan Ramon Resina, Eduardo Subirats, Teresa Vilar?s and Jo Labanyi. My analysis of this literary corpus also considers seminal works on theater and performance theory such as Josep Palau i Fabre?s, Francesc Foguet i Boreu?s, and Ricard Salvat?s in Spain as well as Marvin Carlson?s, Peter Brook?s, and Richard Foreman?s in the United States and Europe

    La biografĂ­a imaginada en Las personas del Verbo de Jaime Gil de Biedma

    No full text

    Birth of a Live Cria After Transfer of a Vitrified-Warmed Alpaca (Vicugna pacos) Preimplantation Embryo

    Get PDF
    The alpaca (Vicugna pacos) is an important species for the production of fiber and food. Genetic improvement programs for alpacas have been hindered, however, by the lack of field-practical techniques for artificial insemination and embryo transfer. In particular, successful techniques for the cryopreservation of alpaca preimplantation embryos have not been reported previously. The objective of this study was to develop a field-practical and efficacious technique for cryopreservation of alpaca preimplantation embryos using a modification of a vitrification protocol originally devised for horses and adapted for dromedary camels. Four naturally cycling non-superovulated Huacaya females serving as embryo donors were mated to males of proven fertility. Donors received 30 μg of gonadorelin at the time of breeding, and embryos were non-surgically recovered 7 days after mating. Recovered embryos (n = 4) were placed individually through a series of three vitrification solutions at 20°C (VS1: 1.4 M glycerol; VS2: 1.4 M glycerol + 3.6 M ethylene glycol; VS3: 3.4 M glycerol + 4.6 M ethylene glycol) before loading into an open-pulled straw (OPS) and plunging directly into liquid nitrogen for storage. At warming, each individual embryo was sequentially placed through warming solutions (WS1: 0.5 M galactose at 37°C; WS2: 0.25 M galactose at 20°C), and warmed embryos were incubated at 37°C in 5% CO2 in humidified air for 20–22 h in 1 ml Syngro® holding medium supplemented with 10% (v/v) alpaca serum to perform an initial in vitro assessment of post-warming viability. Embryos whose diameter increased during culture (n = 2) were transferred individually into synchronous recipients, whereas embryos that did not grow (n = 2) were transferred together into a single recipient to perform an in vivo assessment of post-warming viability. Initial pregnancy detection was performed ultrasonographically 29 days post-transfer when fetal heartbeat could be detected, and one of three recipients was pregnant (25% embryo survival rate). On November 13, 2019, the one pregnant recipient delivered what is believed to be the world's first cria produced from a vitrified-warmed alpaca embryo.This article is published as Lutz JC, Johnson SL, Duprey KJ, Taylor PJ, Vivanco-Mackie HW, Ponce-Salazar D, Miguel-Gonzales M and Youngs CR (2020) Birth of a Live Cria After Transfer of a Vitrified-Warmed Alpaca (Vicugna pacos) Preimplantation Embryo. Front. Vet. Sci. 7:581877. doi:10.3389/fvets.2020.581877.</p

    Laboratory Assessment of the Impact of Chemical Oxidation, Mineral Dissolution, and Heating on the Nitrogen Isotopic Composition of Fossil‐Bound Organic Matter

    No full text
    Fossil‐bound organic material holds great potential for the reconstruction of past changes in nitrogen (N) cycling. Here, with a series of laboratory experiments, we assess the potential effect of oxidative degradation, fossil dissolution, and thermal alteration on the fossil‐bound N isotopic composition of different fossil types, including deep and shallow water scleractinian corals, foraminifera, diatoms and tooth enamel. Our experiments show that exposure to different oxidizing reagents does not significantly affect the N isotopic composition or N content of any of the fossil types analyzed, demonstrating that organic matter is well protected from changes in the surrounding environment by the mineral matrix. In addition, we show that partial dissolution (of up to 70%–90%) of fossil aragonite, calcite, opal, or enamel matrixes has a negligible effect on the N isotopic composition and N content of the fossils. These results suggest that the isotopic composition of fossil‐bound organic material is relatively uniform, and also that N exposed during dissolution is lost without significant isotopic discrimination. Finally, our heating experiments show negligible changes in the N isotopic composition and N content of all fossil types at 100°C. At 200°C and hotter, any N loss and associated nitrogen isotope changes appear to be directly linked to the sensitivity of the mineral matrix to thermal stress, which depends on the biomineral type. These results suggest that, so long as high temperature does not compromise the mineral structure, the biomineral matrix acts as a closed system with respect to N, and the N isotopic composition of the fossil remains unchanged.Plain Language Summary: The ratio of the heavy and light isotopes of nitrogen (15N and 14N) in the organic material contained within the mineral structure of fossils can be used to reconstruct past changes in biological and chemical processes. With a series of laboratory experiments, we evaluate the potential effects of chemical conditions, fossil dissolution, and heating on the nitrogen isotopic composition (15N/14N ratio) of corals, foraminifera, diatoms and tooth enamel. Our results indicate that these processes do not have a significant effect on the 15N/14N of fossils, suggesting that the mineral matrix provides a barrier that isolates a fossil's organic nitrogen from the surrounding environment, preventing alteration of its 15N/14N. In addition, we show that if part of the fossil‐bound organic nitrogen is exposed by dissolution or heating, it is lost without affecting the 15N/14N of the organic material that remains in the mineral. These findings imply that the original 15N/14N ratio incorporated by the organism is preserved in the geologic record. Therefore, measurements of the nitrogen isotopes on fossils can provide faithful biological, ecological, and environmental information about the past.Key Points: Fossil‐bound organic matter is well protected by the mineral matrix from chemical changes in the surrounding environment. Partial dissolution of fossil calcite, aragonite, opal, and enamel has a negligible effect on their N isotopic composition and N content. During heating, fossil N content and isotopic composition remains unchanged if the structure of the inorganic matrix is not compromised.Max Planck SocietyDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659US National Science FoundationPaul Crutzen Nobel Prize Fellowshiphttps://doi.org/10.5281/zenodo.688468
    corecore