14 research outputs found

    A Survey of Adversarial Machine Learning in Cyber Warfare

    Get PDF
    The changing nature of warfare has seen a paradigm shift from the conventional to asymmetric, contactless warfare such as information and cyber warfare. Excessive dependence on information and communication technologies, cloud infrastructures, big data analytics, data-mining and automation in decision making poses grave threats to business and economy in adversarial environments. Adversarial machine learning is a fast growing area of research which studies the design of Machine Learning algorithms that are robust in adversarial environments. This paper presents a comprehensive survey of this emerging area and the various techniques of adversary modelling. We explore the threat models for Machine Learning systems and describe the various techniques to attack and defend them. We present privacy issues in these models and describe a cyber-warfare test-bed to test the effectiveness of the various attack-defence strategies and conclude with some open problems in this area of research.

    Towards Effective Measurement of Membership Privacy Risk for Machine Learning Models

    Get PDF
    Machine learning (ML) models are trained on data which can be sensitive. Membership inference attacks (MIAs) infer whether a particular data record was used to train an ML model. This violates the membership privacy of an individual, specially in applications where the knowledge of that individual's data record in training data is sensitive. For instance, the privacy risk of inferring an individual's health status from a model trained on a dataset containing patients with some specific disease. There is a need for a privacy metric that enables ML model builders to quantify the membership privacy risk of (a) individual training data records, (b) computed independently of specific MIAs, (c) which assesses susceptibility to different MIAs, (d) can be used for different applications, (e) efficiently. None of the prior membership privacy risk metrics simultaneously meet all of these criteria. Ideally, a membership privacy risk metric will measure the memorization of individual training data records by large capacity ML models, which is the cause for membership privacy risk as suggested by prior work. In practice, this can be achieved by estimating the influence of individual training data records to a model's utility. Leave-one-out (LOO) computation, i.e., the difference in model utility with and without a data record in training dataset, can be used to measure this memorization but at high computation cost. Shapley values is an alternative LOO approach with efficient algorithms in the literature. It measures the influence of a training data record on a model's utility and thereby the extent of it being memorized by that model. Hence, we conjecture that Shapley values, can serve as a good membership privacy risk metric to indicate the susceptibility of training data records to MIAs. In this work, we explore the following research question: can Shapley values effectively estimate the susceptibility of individual training data records to MIAs? We validate the above conjecture by presenting SHAPr, a membership privacy metric based on Shapely values which satisfies the desiderata (a) - (e) mentioned above. Using ten benchmark datasets and five MIAs, we show that SHAPr is indeed effective in estimating susceptibility of a training data records to different MIAs as computed using F1 scores. We then focus on recall as being more important than precision for evaluating effectiveness of membership privacy risk metrics. We find that using recall, SHAPr is effective to assess the susceptibility across different MIAs and datasets. We find that SHAPr is either comparable or better than prior work for effective MIAs (good accuracy on both members and non-members). Additionally, other than inheriting applications of Shapley values (e.g., data valuation), SHAPr is versatile and can be used for estimating the disproportionate vulnerability over different subgroups to MIAs. We apply SHAPr to evaluate the efficacy of several defenses against MIAs. First, we show that adding noise to subset of training data records lowers their privacy risk. But this comes at the cost of increasing the privacy risk for remaining training data records, making it an ineffective defence. Second, we show that the membership privacy risk of a dataset is not necessarily improved by removing high risk training data records, thereby confirming an observation from prior work in a significantly extended setting (across ten datasets, removing up to 50% of vulnerable training data records). Third, SHAPr correctly captures the decrease in MIA accuracy on using regularization based defence. Finally, SHAPr has acceptable computational cost (compared to naive LOO), i.e., varying from a few minutes for the smallest dataset to ~92 minutes for the largest dataset

    GrOVe: Ownership Verification of Graph Neural Networks using Embeddings

    Full text link
    Graph neural networks (GNNs) have emerged as a state-of-the-art approach to model and draw inferences from large scale graph-structured data in various application settings such as social networking. The primary goal of a GNN is to learn an embedding for each graph node in a dataset that encodes both the node features and the local graph structure around the node. Embeddings generated by a GNN for a graph node are unique to that GNN. Prior work has shown that GNNs are prone to model extraction attacks. Model extraction attacks and defenses have been explored extensively in other non-graph settings. While detecting or preventing model extraction appears to be difficult, deterring them via effective ownership verification techniques offer a potential defense. In non-graph settings, fingerprinting models, or the data used to build them, have shown to be a promising approach toward ownership verification. We present GrOVe, a state-of-the-art GNN model fingerprinting scheme that, given a target model and a suspect model, can reliably determine if the suspect model was trained independently of the target model or if it is a surrogate of the target model obtained via model extraction. We show that GrOVe can distinguish between surrogate and independent models even when the independent model uses the same training dataset and architecture as the original target model. Using six benchmark datasets and three model architectures, we show that consistently achieves low false-positive and false-negative rates. We demonstrate that is robust against known fingerprint evasion techniques while remaining computationally efficient.Comment: 11 pages, 5 figure

    Quantifying Privacy Leakage in Graph Embedding

    Get PDF
    Graph embeddings have been proposed to map graph data to low dimensional space for downstream processing (e.g., node classification or link prediction). With the increasing collection of personal data, graph embeddings can be trained on private and sensitive data. For the first time, we quantify the privacy leakage in graph embeddings through three inference attacks targeting Graph Neural Networks. We propose a membership inference attack to infer whether a graph node corresponding to individual user's data was member of the model's training or not. We consider a blackbox setting where the adversary exploits the output prediction scores, and a whitebox setting where the adversary has also access to the released node embeddings. This attack provides an accuracy up to 28% (blackbox) 36% (whitebox) beyond random guess by exploiting the distinguishable footprint between train and test data records left by the graph embedding. We propose a Graph Reconstruction attack where the adversary aims to reconstruct the target graph given the corresponding graph embeddings. Here, the adversary can reconstruct the graph with more than 80% of accuracy and link inference between two nodes around 30% more confidence than a random guess. We then propose an attribute inference attack where the adversary aims to infer a sensitive attribute. We show that graph embeddings are strongly correlated to node attributes letting the adversary inferring sensitive information (e.g., gender or location).Comment: 11 page

    Inferring Sensitive Attributes from Model Explanations

    Get PDF
    International audienceModel explanations provide transparency into a trained machine learning model’s blackbox behavior to a model builder. They indicate the influence of different input attributes to its corresponding model prediction. The dependency of explanations on input raises privacy concerns for sensitive user data. However, current literature has limited discussion on privacy risks of model explanations. We focus on the specific privacy risk of attribute inference attack wherein an adversary infers sensitive attributes of an input (e.g., Race and Sex) given its model explanations. We design the first attribute inference attack against model explanations in two threat models where model builder either (a) includes the sensitive attributes in training data and input or (b) censors the sensitive attributes by not including them in the training data and input. We evaluate our proposed attack on four benchmark datasets and four state-of-the-art algorithms. We show that an adversary can successfully infer the value of sensitive attributes from explanations in both the threat models accurately. Moreover, the attack is successful even by exploiting only the explanations correspondingto sensitive attributes. These suggest that our attack is effective against explanations and poses a practical threat to data privacy. On combining the model predictions (an attack surface exploited by prior attacks) with explanations, we note that the attack success does not improve. Additionally, the attack success on exploiting model explanations is better compared to exploiting only model predictions. These suggest that model explanations are a strong attack surface to exploit for an adversary

    Towards Privacy Aware Deep Learning for Embedded Systems

    Get PDF
    International audienceMemorization of training data by deep neural networks enables an adversary to mount successful membership inference attacks. Here, an adversary with blackbox query access to the model can infer whether an individual’s data record was part of the model’s sensitive training data using only the output predictions. This violates the data confidentiality, by inferring samples from proprietary training data, and privacy of the individual whose sensitive record was used to train the model. This privacy threat is profound in commercial embedded systems with on-device processing. Addressing this problem requires neural networks to be inherently private by design while conforming to the memory, power and computation constraints of embedded systems. This is lacking in literature. We present the first work towards membership privacy by design in neural networks while reconciling privacy-accuracy-efficiency trade-offs for embedded systems. We conduct an extensive privacy-centred neural network design space exploration to understand the membership privacy risks of well adopted state-of-the-art techniques: model compression via pruning, quantization, and off-the-shelf efficient architectures. We study the impact of model capacity on memorization of training data and show that compressed models (after retraining) leak more membership information compared to baseline uncompressed models while off-the-shelf architectures do not satisfy all efficiency requirements. Based on these observations, we identify quantization as a potential design choice to address the three dimensional trade-off. We propose Gecko training methodology where we explicitly add resistance to membership inference attacks as a design objective along with memory, computation, and power constraints of the embedded devices. We show that models trained using Gecko are comparable to prior defences against blackbox membership attacks in terms of accuracy and privacy while additionally providing efficiency. This enables Gecko models to be deployed on embeddedsystems while providing membership privacy

    Privacy Leakage in Graph Embedding

    Get PDF
    Graph embeddings have been proposed to map graph data to low dimensional space for downstream processing (e.g., node classification or link prediction). With the increasing collection of personal data, graph embeddings can be trained on private and sensitive data. For the first time, we quantify the privacy leakage in graph embeddings through three inference attacks targeting Graph Neural Networks. We propose a membership inference attack to infer whether a graph node corresponding to individual user's data was member of the model's training or not. We consider a blackbox setting where the adversary exploits the output prediction scores, and a whitebox setting where the adversary has also access to the released node embeddings. This attack provides an accuracy up to 28% (blackbox) 36% (whitebox) beyond random guess by exploiting the distinguishable footprint between train and test data records left by the graph embedding. We propose a Graph Reconstruction attack where the adversary aims to reconstruct the target graph given the corresponding graph embeddings. Here, the adversary can reconstruct the graph with more than 80% of accuracy and link inference between two nodes around 30% more confidence than a random guess. We then propose an attribute inference attack where the adversary aims to infer a sensitive attribute. We show that graph embeddings are strongly correlated to node attributes letting the adversary inferring sensitive information (e.g., gender or location)
    corecore