715 research outputs found

    The presentation, course and outcome of COVID-19 infection in people with Prader-Willi syndrome: unexpected findings from an international survey.

    Get PDF
    BACKGROUND: Prader-Willi syndrome (PWS), is a genetically determined neurodevelopmental disorder, associated with intellectual disabilities and a high incidence of obesity, diabetes mellitus, and respiratory disorders. We hypothesised that COVID-19, a viral infection which more severely affects people with these conditions, would, in people with PWS, present atypically and result in severe outcomes. METHOD: A structured on-line questionnaire was piloted with parents and professionals at the International Prader-Willi Syndrome Organization (IPWSO) and promoted internationally through their global network. Family members/other carers were asked to complete if someone they cared for with PWS was strongly suspected or confirmed as having COVID-19. RESULTS: Over 1 year of the pandemic 72 responses were received, 47 adults, 25 children. The following underlying conditions were present: 16 people with PWS were overweight and 18 obese, five had diabetes mellitus and 18 sleep apnoea. Main presenting symptoms were raised temperature, fatigue/daytime sleepiness, dry cough, headache/pain, and feeling unwell, with illnesses generally lasting less than a week. Length of illness was not significantly related to age, BMI, sex, or genetic subtype. No one was ventilated or in an intensive care unit or died, one person was in hospital for four days needing oxygen. CONCLUSIONS: Contrary to our hypothesis, the PWS cohort had asymptomatic infection or mild illness. A possible explanation, supported by anecdotal evidence from parents and professional carers, is that people with PWS have a degree of innate immunity to viral infections. However, likely selection effects and a relatively low number of responses means that further evidence is needed to test this hypothesis

    Dynamics of Rye Chromosome 1R Regions with High or Low Crossover Frequency in Homology Search and Synapsis Development

    Get PDF
    In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis

    Fragile X syndrome: Diagnostic and carrier testing

    Get PDF
    The following are the recommendations of the American College of Medical Genetics (ACMG) Professional Practice and Guidelines Committee, convened to assist health care professionals in making decisions regarding genetic diagnosis and testing. The purpose of this document is to provide a brief overview of fragile X syndrome (FXS), and to make recommendations that can serve as general guidelines to aid clinicians in making referrals for diagnostic and carrier testing for this condition. Fragile X syndrome is the most common cause of inherited mental retardation and is caused by a mutation in the X-linked FMR1 gene. DNA studies are used for testing individuals with symptoms of FXS and individuals at risk for carrying the mutation. Genotypes are determined by examining the size of the trinucleotide repeat segment and the methylation status of the FMR1 gene. These guidelines supersede the 1994 ACMG statement of the same name

    Single ventricle with persistent truncus arteriosus as two rare entities in an adult patient: a case report

    Get PDF
    Abstract Introduction Single ventricle and truncus arteriosus are both rare congenital cardiac syndromes with limited survival. Their occurrence together is extremely uncommon and prolonged survival is exceptionally rare. We present the case of a patient who had both of these defects with survival to age 45. Case presentation We describe the vase of a 45-year-old man with the unusual occurrence of two very rare congenital cardiac defects. He was found to have both truncus arteriosus and single ventricle with long survival. His history, clinical course, and anatomic findings are discussed along with the factors which may have contributed to his longevity, which is unique in the medical literature. His management reflected the state of medical knowledge at the time when he presented, and although alternate approaches may have been utilized if the patient presented today, this case does indicate the efficacy of the management options available at the time and place of the patient's contacts with the medical care system in Belarus. We discuss the findings, frequency, classification, and management of both of these congenital defects. Conclusion This case demonstrates that patients with very complex congenital cardiac disease may survive to adulthood, presenting challenges in both medical and surgical treatment. As the management of these patients is constantly evolving, and interventional techniques are improving, patients such as this with prolonged survival will be more common, with each case providing insights to future treatment. Challenges in management may include prior care provided in health care systems with limited resources.</p

    Mineral analysis of complete dog and cat foods in the UK and compliance with European guidelines

    Get PDF
    Mineral content of complete pet food is regulated to ensure health of the companion animal population. Analysis of adherence to these regulatory guidelines has not been conducted. Here, mineral composition of complete wet (n = 97) and dry (n = 80) canine and feline pet food sold in the UK was measured to assess compliance with EU guidelines. A majority of foods complied with ≥8 of 11 guidelines (99% and 83% for dry and wet food, respectively), but many failed to provide nutritional minimum (e.g. Cu, 20% of wet food) or exceeded nutritional maximum (e.g. Se, 76% of wet food). Only 6% (6/97) of wet and 38% (30/80) of dry food were fully compliant. Some foods (20–30% of all analysed) had mineral imbalance, such as not having the recommended ratio of Ca:P (between 1:1 to 2:1). Foods with high fish content had high levels of undesirable metal elements such as arsenic. This study highlights broad non-compliance of a range of popular pet foods sold in the UK with EU guidelines (94% and 61% of wet and dry foods, respectively). If fed exclusively and over an extended period, a number of these pet foods could impact the general health of companion animals

    Antiferromagnetism and p‐type conductivity of nonstoichiometric nickel oxide thin films

    Get PDF
    Plasma‐enhanced atomic layer deposition was used to grow non‐stoichiometric nickel oxide thin films with low impurity content, high crystalline quality, and p‐type conductivity. Despite the non‐stoichiometry, the films retained the antiferromagnetic property of NiO

    Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7.</p> <p>Methods</p> <p>Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-α, a cytokine that activates both inflammatory and fibrogenic pathways.</p> <p>Results</p> <p>Here we demonstrate that TNF-α mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-α production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself.</p> <p>Conclusion</p> <p>Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.</p
    corecore