147 research outputs found

    Tracking a beam of electrons from the low solar corona into interplanetary space with the Low Frequency Array, Parker Solar Probe and 1 au spacecraft

    Full text link
    Type III radio bursts are the result of plasma emission from mildly relativistic electron beams propagating from the low solar corona into the heliosphere where they can eventually be detected in situ if they align with the location of a heliospheric spacecraft. Here we observe a type III radio burst from 0.1-16 MHz using the Parker Solar Probe (PSP) FIELDS Radio Frequency Spectrometer (RFS), and from 10-80 MHz using the Low Frequency Array (LOFAR). This event was not associated with any detectable flare activity but was part of an ongoing noise storm that occurred during PSP encounter 2. A deprojection of the LOFAR radio sources into 3D space shows that the type III radio burst sources were located on open magnetic field from 1.6-3 RR_\odot and originated from a specific active region near the East limb. Combining PSP/RFS observations with WIND/WAVES and Solar Terrestrial Relations Observatory (STEREO)/WAVES, we reconstruct the type III radio source trajectory in the heliosphere interior to PSP's position, assuming ecliptic confinement. An energetic electron enhancement is subsequently detected in situ at the STEREO-A spacecraft at compatible times although the onset and duration suggests the individual burst contributes a subset of the enhancement. This work shows relatively small-scale flux emergence in the corona can cause the injection of electron beams from the low corona into the heliosphere, without needing a strong solar flare. The complementary nature of combined ground and space-based radio observations, especially in the era of PSP, is also clearly highlighted by this study.Comment: 17 pages, 10 figures, Submitted to ApJ, April 15 202

    SEPServer catalogues of solar energetic particle events at 1 AU based on STEREO recordings: 2007–2012

    Get PDF
    The Solar Terrestrial Relations Observatory (STEREO) recordings provide an unprecedented opportunity to study the evolution of solar energetic particle (SEP) events from different observation points in the heliosphere, allowing one to identify the effects of the properties of the interplanetary magnetic field (IMF) and solar wind structures on the interplanetary transport and acceleration of SEPs. Two catalogues based on STEREO recordings, have been compiled as a part of the SEPServer project, a three-year collaborative effort of eleven European partners funded under the Seventh Framework Programme of the European Union (FP7/SPACE). In particular, two instruments on board STEREO have been used to identify all SEP events observed within the descending phase of solar cycle 23 and the rising phase of solar cycle 24 from 2007 to 2012, namely: the Low Energy Telescope (LET) and the Solar Electron Proton Telescope (SEPT). A scan of STEREO/LET protons within the energy range 6–10 MeV has been performed for each of the two STEREO spacecraft. We have tracked all enhancements that have been observed above the background level of this particular channel and cross-checked with available lists of interplanetary coronal mass ejections (ICMEs), stream interaction regions (SIRs), and shocks, as well as with the reported events in literature. Furthermore, parallel scanning of the STEREO near relativistic electrons has been performed in order to pinpoint the presence (or absence) of an electron event in the energy range of 55–85 keV, for all of the aforementioned proton events included in our lists. We provide the onset and peak time as well as the peak value of all events for both protons and electrons, the relevant solar associations in terms of electromagnetic emissions, soft and hard X-rays (SXRs and HXRs). Finally, a subset of events with clear recordings at both STEREO spacecraft is presented together with the parent solar events of these multispacecraft SEP events

    Observations of a Solar Energetic Particle Event From Inside and Outside the Coma of Comet 67P

    Get PDF
    Publisher Copyright: ©2022. The Authors.We analyze observations of a solar energetic particle (SEP) event at Rosetta's target comet 67P/Churyumov-Gerasimenko during 6–10 March 2015. The comet was 2.15 AU from the Sun, with the Rosetta spacecraft approximately 70 km from the nucleus placing it deep inside the comet's coma and allowing us to study its response. The Eastern flank of an interplanetary coronal mass ejection (ICME) also encountered Rosetta on 6 and 7 March. Rosetta Plasma Consortium data indicate increases in ionization rates, and cometary water group pickup ions exceeding 1 keV. Increased charge exchange reactions between solar wind ions and cometary neutrals also indicate increased upstream neutral populations consistent with enhanced SEP induced surface activity. In addition, the most intense parts of the event coincide with observations interpreted as an infant cometary bow shock, indicating that the SEPs may have enhanced the formation and/or intensified the observations. These solar transient events may also have pushed the cometopause closer to the nucleus. We track and discuss characteristics of the SEP event using remote observations by SOHO, WIND, and GOES at the Sun, in situ measurements at Solar Terrestrial Relations Observatory Ahead, Mars and Rosetta, and ENLIL modeling. Based on its relatively prolonged duration, gradual and anisotropic nature, and broad angular spread in the heliosphere, we determine the main particle acceleration source to be a distant ICME which emerged from the Sun on 6 March 2015 and was detected locally in the Martian ionosphere but was never encountered by 67P directly. The ICME's shock produced SEPs for several days which traveled to the in situ observation sites via magnetic field line connections.Peer reviewe

    The first widespread solar energetic particle event of solar cycle 25 on 2020 November 29 : Shock wave properties and the wide distribution of solar energetic particles

    Get PDF
    Context. On 2020 November 29, an eruptive event occurred in an active region located behind the eastern solar limb as seen from Earth. The event consisted of an M4.4 class flare, a coronal mass ejection, an extreme ultraviolet (EUV) wave, and a white-light (WL) shock wave. The eruption gave rise to the first widespread solar energetic particle (SEP) event of solar cycle 25, which was observed at four widely separated heliospheric locations (similar to 230 degrees). Aims. Our aim is to better understand the source of this widespread SEP event, examine the role of the coronal shock wave in the wide distribution of SEPs, and investigate the shock wave properties at the field lines magnetically connected to the spacecraft. Methods. Using EUV and WL data, we reconstructed the global three-dimensional structure of the shock in the corona and computed its kinematics. We determined the magnetic field configurations in the corona and interplanetary space, inferred the magnetic connectivity of the spacecraft with the shock surface, and derived the evolution of the shock parameters at the connecting field lines. Results. Remote sensing observations show formation of the coronal shock wave occurring early during the eruption, and its rapid propagation to distant locations. The results of the shock wave modelling show multiple regions where a strong shock has formed and efficient particle acceleration is expected to take place. The pressure/shock wave is magnetically connected to all spacecraft locations before or during the estimated SEP release times. The release of the observed near-relativistic electrons occurs predominantly close to the time when the pressure/shock wave connects to the magnetic field lines or when the shock wave becomes supercritical, whereas the proton release is significantly delayed with respect to the time when the shock wave becomes supercritical, with the only exception being the proton release at the Parker Solar Probe. Conclusions. Our results suggest that the shock wave plays an important role in the spread of SEPs. Supercritical shock regions are connected to most of the spacecraft. The particle increase at Earth, which is barely connected to the wave, also suggests that the cross-field transport cannot be ignored. The release of energetic electrons seems to occur close to the time when the shock wave connects to, or becomes supercritical at, the field lines connecting to the spacecraft. Energetic protons are released with a time-delay relative to the time when the pressure/shock wave connects to the spacecraft locations. We attribute this delay to the time that it takes for the shock wave to accelerate protons efficiently.Peer reviewe

    First near-relativistic solar electron events observed by EPD onboard Solar Orbiter

    Get PDF
    Context. Solar Orbiter, launched in February 2020, started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au from the Sun. The in situ instruments onboard, including the Energetic Particle Detector (EPD), operate continuously during the cruise phase enabling the observation of solar energetic particles. Aims. In situ measurements of the first near-relativistic solar electron events observed in July 2020 by EPD are analyzed and the solar origins and the conditions for the interplanetary transport of these particles investigated. Methods. Electron observations from keV energies to the near-relativistic range were combined with the detection of type III radio bursts and extreme ultraviolet (EUV) observations from multiple spacecraft in order to identify the solar origin of the electron events. Electron anisotropies and timing as well as the plasma and magnetic field environment were evaluated to characterize the interplanetary transport conditions. Results. All electron events were clearly associated with type III radio bursts. EUV jets were also found in association with all of them except one. A diversity of time profiles and pitch-angle distributions was observed. Different source locations and different magnetic connectivity and transport conditions were likely involved. The July 11 event was also detected by Wind, separated 107 degrees in longitude from Solar Orbiter. For the July 22 event, the Suprathermal Electron and Proton (STEP) sensor of EPD allowed for us to not only resolve multiple electron injections at low energies, but it also provided an exceptionally high pitch-angle resolution of a very anisotropic beam. This, together with radio observations of local Langmuir waves suggest a very good magnetic connection during the July 22 event. This scenario is challenged by a high-frequency occultation of the type III radio burst and a nominally non-direct connection to the source; therefore, magnetic connectivity requires further investigation

    Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach

    Get PDF
    Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique

    Tracking a Beam of Electrons from the Low Solar Corona into Interplanetary Space with the Low Frequency Array, Parker Solar Probe, and 1 au Spacecraft

    Get PDF
    Type III radio bursts are the result of plasma emission from mildly relativistic electron beams propagating from the low solar corona into the heliosphere where they can eventually be detected in situ if they align with the location of a heliospheric spacecraft. Here we observe a type III radio burst from 0.1 to 16 MHz using the Parker Solar Probe (PSP) FIELDS Radio Frequency Spectrometer (RFS) and from 20 to 80 MHz using the Low Frequency Array (LOFAR). This event was not associated with any detectable flare activity but was part of an ongoing type III and noise storm that occurred during PSP encounter 2. A deprojection of the LOFAR radio sources into 3D space shows that the type III radio burst sources were located on open magnetic field from 1.6 to 3 R (circle dot) and originated from a near-equatorial active region around longitude E48 degrees. Combining PSP/RFS observations with WIND/WAVES and Solar Terrestrial Relations Observatory (STEREO) WAVES, we reconstruct the type III radio source trajectory in the heliosphere interior to PSP's position, assuming ecliptic confinement. An energetic electron enhancement is subsequently detected in situ at the STEREO A spacecraft at compatible times, although the onset and duration suggests the individual burst contributes a subset of the enhancement. This work shows relatively small-scale flux emergence in the corona can cause the injection of electron beams from the low corona into the heliosphere, without needing a strong solar flare. The complementary nature of combined ground and space-based radio observations, especially in the era of PSP, is also clearly highlighted by this study

    Multi-spacecraft observations of the structure of the sheath of an interplanetary coronal mass ejection and related energetic ion enhancement

    Get PDF
    Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary space, but the relation of their internal structure to the particle energization process is still a relatively little studied subject. In particular, the role of sheaths in accelerating particles when the shock Mach number is low is a significant open research problem. Aims. This work seeks to provide new insights on the internal structure of CME-driven sheaths with regard to energetic particle enhancements. A good opportunity to achieve this aim was provided by multi-point, in-situ observations of a sheath region made by radially aligned spacecraft at 0.8 and similar to 1 AU (Solar Orbiter, the L1 spacecraft Wind and ACE, and BepiColombo) on April 19-21, 2020. The sheath was preceded by a weak and slowly propagating fast-mode shock. Methods. We apply a range of analysis techniques to in situ magnetic field, plasma and particle observations. The study focuses on smaller scale sheath structures and magnetic field fluctuations that coincide with energetic ion enhancements. Results. Energetic ion enhancements were identified in the sheath, but at different locations within the sheath structure at Solar Orbiter and L1. Magnetic fluctuation amplitudes at inertial-range scales increased in the sheath relative to the solar wind upstream of the shock, as is typically observed. However, when normalised to the local mean field, fluctuation amplitudes did not increase significantly; magnetic compressibility of fluctuation also did not increase within the sheath. Various substructures were found to be embedded within the sheath at the different spacecraft, including multiple heliospheric current sheet (HCS) crossings and a small-scale flux rope. At L1, the ion flux enhancement was associated with the HCS crossings, while at Solar Orbiter, the ion enhancement occurred within a compressed, small-scale flux rope. Conclusions. Several internal smaller-scale substructures and clear difference in their occurrence and properties between the used spacecraft was identified within the analyzed CME-driven sheath. These substructures are favourable locations for the energization of charged particles in interplanetary space. In particular, substructures that are swept from the upstream solar wind and compressed into the sheath can act as effective acceleration sites. A possible acceleration mechanism is betatron acceleration associated with a small-scale flux rope and warped HCS compressed in the sheath, while the contribution of shock acceleration to the latter cannot be excluded.Peer reviewe

    Differentiation dependent expression of urocortin’s mRNA and peptide in human osteoprogenitor cells: influence of BMP-2, TGF-beta-1 and dexamethasone

    Get PDF
    Urocortin-1 (UCN) a corticotropin releasing-factor (CRF) related peptide, has been found to be expressed in many different tissues like the central nervous system, the cardiovascular system, adipose tissue, and skeletal muscle. The effects of UCN are mediated via stimulation of CRF-receptors 1 and 2 (CRFR1 and 2, CRFR’s) with a high affinity for CRFR2. It has been shown that the CRF-related peptides and CRFR’s are involved in the regulation of stress-related endocrine, autonomic and behavioural responses. Using immunocytochemistry, immunohistochemistry and RT–PCR, we now can show the differentiation dependent expression of UCN mRNA and peptide in human mesenchymal progenitor cells (MSCs) directed to the osteoblastic phenotype for the first time. UCN expression was down regulated by TGF-beta and BMP-2 in the early proliferation phase of osteoblast development, whereas dexamethasone (dex) minimally induced UCN gene expression during matrix maturation after 24 h stimulation. Stimulation of MSCs for 28 days with ascorbate/beta-glycerophosphate (asc/bGp) induced UCN gene expression at day 14. This effect was prevented when using 1,25-vitamin D3 or dex in addition. There was no obvious correlation to osteocalcin (OCN) gene expression in these experiments. In MSCs from patients with metabolic bone disease (n = 9) UCN gene expression was significantly higher compared to MSCs from normal controls (n = 6). Human MSCs did not express any of the CRFR’s during differentiation to osteoblasts. Our results indicate that UCN is produced during the development of MSCs to osteoblasts and differentially regulated during culture as well as by differentiation factors. The expression is maximal between proliferation and matrix maturation phase. However, UCN does not seem to act on the osteoblast itself as shown by the missing CRFR’s. Our results suggest new perspectives on the role of urocortin in human skeletal tissue in health and disease
    corecore