566 research outputs found

    Additively Manufactured Graphitic Electrochemical Sensing Platforms

    Get PDF
    Additive manufacturing (AM)/3D printing technology provides a novel platform for the rapid prototyping of low cost 3D platforms. Herein, we report for the first time, the fabrication, characterisation (physicochemical and electrochemical) and application (electrochemical sensing) of bespoke nanographite (NG)-loaded (25 wt. %) AM printable (via fused deposition modelling) NG/PLA filaments. We have optimised and tailored a variety of NG-loaded filaments and their AM counterparts in order to achieve optimal printability and electrochemical behaviour. Two AM platforms, namely AM macroelectrodes (AMEs) and AM 3D honeycomb (macroporous) structures are benchmarked against a range of redox probes and the simultaneous detection of lead (II) and cadmium (II). This proof-of-concept demonstrates the impact that AM can have within the area of electroanalytical sensors

    Validating the use of hospital episode statistics data and comparison of costing methodologies for economic evaluation:An end-of-life case study from the cluster randomised triAl of PSA testing for prostate cancer (CAP)

    Get PDF
    Objectives To evaluate the accuracy of routine data for costing inpatient resource use in a large clinical trial and to investigate costing methodologies. Design Final-year inpatient cost profiles were derived using (1) data extracted from medical records mapped to the National Health Service (NHS) reference costs via service codes and (2) Hospital Episode Statistics (HES) data using NHS reference costs. Trust finance departments were consulted to obtain costs for comparison purposes. Setting 7 UK secondary care centres. Population A subsample of 292 men identified as having died at least a year after being diagnosed with prostate cancer in Cluster randomised triAl of PSA testing for Prostate cancer (CAP), a long-running trial to evaluate the effectiveness and cost-effectiveness of prostate-specific antigen (PSA) testing. Results Both inpatient cost profiles showed a rise in costs in the months leading up to death, and were broadly similar. The difference in mean inpatient costs was £899, with HES data yielding ∼8% lower costs than medical record data (differences compatible with chance, p=0.3). Events were missing from both data sets. 11 men (3.8%) had events identified in HES that were all missing from medical record review, while 7 men (2.4%) had events identified in medical record review that were all missing from HES. The response from finance departments to requests for cost data was poor: only 3 of 7 departments returned adequate data sets within 6 months. Conclusions Using HES routine data coupled with NHS reference costs resulted in mean annual inpatient costs that were very similar to those derived via medical record review; therefore, routinely available data can be used as the primary method of costing resource use in large clinical trials. Neither HES nor medical record review represent gold standards of data collection. Requesting cost data from finance departments is impractical for large clinical trials.</p

    Next-Generation Additive Manufacturing of Complete Standalone Sodium-Ion Energy Storage Architectures

    Get PDF
    This is the peer reviewed version of the following article: Down, M. P., Martínez-Periñán, E., Foster, C. W., Lorenzo, E., Smith, G. C. & Banks, C. E. (2019). Next-Generation Additive Manufacturing of Complete Standalone Sodium-Ion Energy Storage Architectures. Advanced Energy Materials, 9(11), which has been published in final form at https://doi.org/10.1002/aenm.201803019. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingThe first entirely AM/3D-printed sodium-ion (full-cell) battery is reported herein, presenting a paradigm shift in the design and prototyping of energy- storage architectures. AM/3D-printing compatible composite materials are developed for the first time, integrating the active materials NaMnO2 and TiO2 within a porous supporting material, before being AM/3D- printed into a proof-of-concept model based upon the basic geometry of commercially existing AA battery designs. The freestanding and completely AM/3D-fabricated device demonstrates a respectable performance of 84.3 mAh g-1 with a current density of 8.43 mA g-1; note that the structure is typically comprised of 80% thermoplastic, but yet, still works and functions as an energy-storage platform. The AM/3D-fabricated device is critically benchmarked against a battery developed using the same active materials, but fabricated via a traditional manufacturing method utilizing an ink-based/doctor-bladed methodology, which is found to exhibit a specific capacity of 98.9 mAh m-2 (116.35 mAh g-1). The fabrication of fully AM/3D-printed energy-storage architectures compares favorably with traditional approaches, with the former providing a new direction in battery manufacturing. This work represents a paradigm shift in the technological and design considerations in battery and energy-storage architecture

    Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling

    Get PDF
    To study the mechanisms of death following a single lethal dose of thoracic radiation, WAG/RijCmcr (Wistar) rats were treated with 15 Gy to the whole thorax and followed until they were morbid or sacrificed for invasive assays at 6 weeks. Lung function was assessed by breathing rate and arterial oxygen saturation. Lung structure was evaluated histologically. Cardiac structure and function were examined by echocardiography. The frequency and characteristics of pleural effusions were determined. Morbidity from 15 Gy radiation occurred in all rats 5 to 8 weeks after exposure, coincident with histological pneumonitis. Increases in breathing frequencies peaked at 6 weeks, when profound arterial hypoxia was also recorded. Echocardiography analysis at 6 weeks showed pulmonary hypertension and severe right ventricular enlargement with impaired left ventricular function and cardiac output. Histologic sections of the heart revealed only rare foci of lymphocytic infiltration. Total lung weight more than doubled. Pleural effusions were present in the majority of the irradiated rats and contained elevated protein, but low lactate dehydrogenase, when compared with serum from the same animal. Pleural effusions had a higher percentage of macrophages and large monocytes than neutrophils and contained mast cells that are rarely present in other pathological states. Lethal irradiation to rat lungs leads to hypoxia with infiltration of immune cells, edema and pleural effusion. These changes may contribute to pulmonary vascular and parenchymal injury that result in secondary changes in heart structure and function. We report that conditions resembling congestive heart failure contribute to death during radiation pneumonitis, which indicates new targets for therapy

    Local and global processing in savant artists with autism

    Get PDF
    Abstract. We explored the hypothesis that an enhanced local processing style is characteristic of both art and autism spectrum disorder (ASD) by examining local and global processing in savant artists with ASD. Specifically, savant artists were compared against non-talented individuals with ASD or mild/moderate learning difficulties (MLD), as well as artistically talented or non- talented students, on the block-design task and meaningful and abstract versions of the embedded figures test (EFT). Results demonstrated that there were no significant differences between the meaningful and abstract versions of the EFT, in any of the groups. This suggests that the primary process governing performance on this task was perceptual (local), rather than conceptual (global). More interestingly, the savant artists performed above the level of the ASD and MLD groups on the block-design test, but not the EFT. Despite both the block-design task and the EFT measuring local processing abilities, we suggest that this result is due to the block-design task being an active construction task (requiring the conversion of a visual input into a motor output), whereas the EFT is a passive recognition task. Therefore, although an enhanced local processing style is an important aspect of savant artistic talent, motor control also appears to be a necessary skill

    3D printed graphene based energy storage devices

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1038/srep422333D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (−0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (−0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised

    C Wright Mills, power and the power elites ? a reappraisal

    Get PDF
    This paper revisits and presents a critical appraisal of Mills's analysis of power and the power elite. There are signs of a revival of interest in Mills, but recent commentators have shown little interest in the intellectual, social or political context of his analysis. Setting Mills's thesis in its historical context, we consider an element of his project that has been particularly neglected in recent discussion: Mills's search for possible ways of redistributing power and his attempt to forge an ethico-political stance. Reflecting on recent discussion of contemporary elite formations, we comment on what critics might take from Mills in our own time in relation to the analysis of elites and the politics of critical management studies

    Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution

    Get PDF
    August 1, 2010Bisulfite sequencing measures absolute levels of DNA methylation at single-nucleotide resolution, providing a robust platform for molecular diagnostics. Here, we optimize bisulfite sequencing for genome-scale analysis of clinical samples. Specifically, we outline how restriction digestion targets bisulfite sequencing to hotspots of epigenetic regulation; we show that 30ng of DNA are sufficient for genome-scale analysis; we demonstrate that our protocol works well on formalinfixed, paraffin-embedded (FFPE) samples; and we describe a statistical method for assessing significance of altered DNA methylation patterns.National Institutes of Health (U.S.) (Grant R01HG004401)National Institutes of Health (U.S.) (Grant U54HG03067)National Institutes of Health (U.S.) (Grant U01ES017155

    Next Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries

    Get PDF
    This is the peer reviewed version of the following article: Foster, C. W., Zou, G., Jiang, Y., Down, M. P., Liauw, C. M., Ferrari, A. G., Ji, X., Smith, G. C., Kellyand, P. J., Banks, C. E. (2019). Next Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries. Batteries & Supercaps., 2(5), 448-453, which has been published in final form at https://doi.org/10.1002/batt.201800148. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingHerein, we report the fabrication and application of Li-ion anodes for utilisation within Li-ion batteries, which are fabricated via additive manufacturing/3D printing (fused depo- sition modelling) using a bespoke graphene/polylactic acid (PLA) filament, where the graphene content can be readily tailored and controlled over the range 1–40 wt. %. We demon- strate that a graphene content of 20 wt. % exhibits sufficient conductivity and critically, effective 3D printability for the rapid manufacturing of 3D printed freestanding anodes (3DAs); simplifying the components of the Li-ion battery negating the need for a copper current collector. The 3DAs are physicochemcally and electrochemically characterised and possess sufficient conductivity for electrochemical studies. Critically, it is found that if the 3DAs are used in Li-ion batteries the specific capacity is very poor but can be significantly improved through the use of a chemical pre-treatment. Such treatment induces an increased porosity, which results in a 200-fold increase (after anode stabilisation) of the specific capacity (ca. 500 mAhg-1 at a current density of 40 mAg-1). This work significantly enhances the field of additive manufacturing/3D printed graphene based energy storage devices demonstrating that useful 3D printable batteries can be realise
    corecore