6 research outputs found

    Methods and apparatus for calculating electromagnetic scattering properties of a structure using a normal-vector field and for reconstruction of approximate structures

    Get PDF
    A projection operator framework is described to analyze the concept of localized normal-vector fields within field-material interactions in a spectral basis, in isotropic and anisotropic media. Generate a localized normal-vector field n in a region of the structure defined by the material boundary, decomposed into sub-regions with a predefined normal-vector field and possibly corresponding closed-form integrals. Construct a continuous vector field F using the normal-vector field to select continuous components ET and Dn. Localized integration of normal-vector field n over the sub-regions to determine coefficients of, C. Determine components Ex, Ey, Ez of the electromagnetic field by using field-material interaction operator C to operate on vector field F. Calculate electromagnetic scattering properties of the structure using the determined components of the electromagnetic fiel

    Methods and apparatus for calculating electromagnetic scattering properties of a structure using a normal-vector field and for reconstruction of approximate structures

    No full text
    A projection operator framework is described to analyze the concept of localized normal-vector fields within field-material interactions in a spectral basis, in isotropic and anisotropic media. Generate a localized normal-vector field n in a region of the structure defined by the material boundary, decomposed into sub-regions with a predefined normal-vector field and possibly corresponding closed-form integrals. Construct a continuous vector field F using the normal-vector field to select continuous components ET and Dn. Localized integration of normal-vector field n over the sub-regions to determine coefficients of, C. Determine components Ex, Ey, Ez of the electromagnetic field by using field-material interaction operator C to operate on vector field F. Calculate electromagnetic scattering properties of the structure using the determined components of the electromagnetic fiel

    Modular modeling and optimization for large antenna arrays

    Get PDF
    In the next-generation phased-array systems, a closely packed system of RF functions and electronics is expected. This creates a need for both accurate and flexible design tools. We employ the generalized scattering matrix (GSM) formalism to arrive at a flexible tool with modest computational costs to enable a computer-aided design trajectory. We employ an integral equation technique to generate the scattering matrices and discuss some optimization strategies that seem appropriate for the type design problem that is obtained via the GSM formalism

    Methods and apparatus for determining electromagnetic scattering properties and structural parameters of periodic structures

    No full text
    Numerical calculation of electromagnetic scattering properties and structural parameters of periodic structures is disclosed. A reflection coefficient has a representation as a bilinear or sesquilinear form. Computations of reflection coefficients and their derivatives for a single outgoing direction can benefit from an adjoint-state variable. Because the linear operator is identical for all angles of incidence that contribute to the same outgoing wave direction, there exists a single adjoint-state variable that generates all reflection coefficients from all incident waves that contribute to the outgoing wave. This adjoint-state variable can be obtained by numerically solving a single linear system, whereas one otherwise would need to solve a number of linear systems equal to the number of angles of incidence

    Methods and apparatus for determining electromagnetic scattering properties and structural parameters of periodic structures

    Get PDF
    Numerical calculation of electromagnetic scattering properties and structural parameters of periodic structures is disclosed. A reflection coefficient has a representation as a bilinear or sesquilinear form. Computations of reflection coefficients and their derivatives for a single outgoing direction can benefit from an adjoint-state variable. Because the linear operator is identical for all angles of incidence that contribute to the same outgoing wave direction, there exists a single adjoint-state variable that generates all reflection coefficients from all incident waves that contribute to the outgoing wave. This adjoint-state variable can be obtained by numerically solving a single linear system, whereas one otherwise would need to solve a number of linear systems equal to the number of angles of incidence

    Sequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins alphaB-crystallin and HspB2 in the mammalian lineage.

    No full text
    Contains fulltext : 57736.pdf (publisher's version ) (Closed access)An unexpected feature of the large mammalian genome is the frequent occurrence of closely linked head-to-head gene pairs. Close apposition of such gene pairs has been suggested to be due to sharing of regulatory elements. We show here that the head-to-head gene pair encoding two small heat shock proteins, alphaB-crystallin and HspB2, is closely linked in all major mammalian clades, suggesting that this close linkage is of selective advantage. Yet alphaB-crystallin is abundantly expressed in lens and muscle and in response to a heat shock, while HspB2 is abundant only in muscle and not upregulated by a heat shock. The intergenic distance between the genes for these two proteins in mammals ranges from 645 bp (platypus) to 1069 bp (opossum), with an average of about 900 bp; in chicken the distance was the same as in duck (1.6 kb). Phylogenetic footprinting and sequence alignment identified a number of conserved sequence elements close to the HspB2 promoter and two farther upstream. All known regulatory elements of the mouse alphaB-crystallin promoter are conserved, except in platypus and birds. The lens-specific region 1 (LSR1) and the heat shock elements (HSEs) lack in birds; in platypus the LSR1 is reduced to a Pax-6 site, while the Pax-6 site in LSR2 and a HSE are absent. Most likely the primordial mammalian alphaB-crystallin promoter had two LSRs and two HSEs. In transfection experiments the platypus alphaB-crystallin promoter retained heat shock responsiveness and lens expression. It also directed lens expression in Xenopus laevis transgenes, as did the HspB2 promoter of rat or blind mole rat. Deletion of the middle of the intergenic region including the upstream enhancer affected the activity of both the rat alphaB-crystallin and the HspB2 promoters, suggesting sharing of the enhancer region by the two promoters
    corecore