305 research outputs found

    Space division multiplexing chip-to-chip quantum key distribution

    Get PDF
    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network

    Ultra-low coupling loss fully-etched apodized grating coupler with bonded metal mirror

    Get PDF
    paper ThD2International audienceA fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm

    Ultra-High-Efficiency Apodized Grating Coupler Using a Fully Etched Photonic Crystal

    Get PDF

    Experimental demonstration of the DPTS QKD protocol over a 170 km fiber link

    Get PDF
    Quantum key distribution (QKD) is a promising technology aiming at solving the security problem arising from the advent of quantum computers. While the main theoretical aspects are well developed today, limited performances, in terms of achievable link distance and secret key rate, are preventing the deployment of this technology on a large scale. More recent QKD protocols, which use multiple degrees of freedom for the encoding of the quantum states, allow an enhancement of the system performances. Here, we present the experimental demonstration of the differential phase-time shifting protocol (DPTS) up to 170 km of fiber link. We compare its performance with the well-known coherent one-way (COW) and the differential phase shifting (DPS) protocols, demonstrating a higher secret key rate up to 100 km. Moreover, we propagate a classical signal in the same fiber, proving the compatibility of quantum and classical light.Comment: 5 pages, 3 figures, journal pape

    High-Dimensional Quantum Key Distribution based on Multicore Fiber using Silicon Photonic Integrated Circuits

    Get PDF
    Quantum Key Distribution (QKD) provides an efficient means to exchange information in an unconditionally secure way. Historically, QKD protocols have been based on binary signal formats, such as two polarisation states, and the transmitted information efficiency of the quantum key is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional QKD protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually unbiased bases in a four-dimensional Hilbert space, and achieved low and stable quantum bit error rate well below both coherent attack and individual attack limits. Compared to previous demonstrations, the use of a multicore fiber in our protocol provides a much more efficient way to create high-dimensional quantum states, and enables breaking the information efficiency limit of traditional QKD protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling manipulating high-dimensional quantum states in a compact and stable means. Our demonstration pave the way to utilize state-of-the-art multicore fibers for long distance high-dimensional QKD, and boost silicon photonics for high information efficiency quantum communications.Comment: Please see the complementary work arXiv:1610.01682 (2016

    Unidirectional frequency conversion in microring resonators for on-chip frequency-multiplexed single-photon sources

    Get PDF
    Microring resonators are attractive for low-power frequency conversion via Bragg-scattering four-wave-mixing due to their comb-like resonance spectrum. However, conversion efficiency is limited to 50% due to the equal probability of up- and down-conversion. Here, we demonstrate how two coupled microrings enable highly directional conversion between the spectral modes of one of the rings. An extinction between up- and down-conversion of more than 40 dB is experimentally observed. Based on this method, we propose a design for on-chip multiplexed single-photon sources that allow localized frequency modes to be converted into propagating continuous-mode photon wave packets using a single operation. The key is that frequency conversion works as a switch on both spatial and spectral degrees of freedom of photons if the microring is interferometrically coupled to a bus waveguide. Our numerical results show 99% conversion efficiency into a propagating mode with a wave packet having a 90% overlap with a Gaussian for a ratio between intrinsic and coupling quality factors of 400
    • …
    corecore