473 research outputs found

    Event-Based H∞ filter design for a class of nonlinear time-varying systems with fading channels and multiplicative noises

    Get PDF
    In this paper, a general event-triggered framework is developed to deal with the finite-horizon H∞ filtering problem for discrete time-varying systems with fading channels, randomly occurring nonlinearities and multiplicative noises. An event indicator variable is constructed and the corresponding event-triggered scheme is proposed. Such a scheme is based on the relative error with respect to the measurement signal in order to determine whether the measurement output should be transmitted to the filter or not. The fading channels are described by modified stochastic Rice fading models. Some uncorrelated random variables are introduced, respectively, to govern the phenomena of state-multiplicative noises, randomly occurring nonlinearities as well as fading measurements. The purpose of the addressed problem is to design a set of time-varying filter such that the influence from the exogenous disturbances onto the filtering errors is attenuated at the given level quantified by a H∞ norm in the mean-square sense. By utilizing stochastic analysis techniques, sufficient conditions are established to ensure that the dynamic system under consideration satisfies the H∞ filtering performance constraint, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired filter gains. Simulation results demonstrate the effectiveness of the developed filter design scheme

    Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying systems

    Get PDF
    This paper is concerned with the finite-horizon estimation problem of randomly occurring faults for a class of nonlinear systems whose parameters are all time-varying. The faults are assumed to occur in a random way governed by two sets of Bernoulli distributed white sequences. The stochastic nonlinearities entering the system are described by statistical means that can cover several classes of well-studied nonlinearities. The aim of the problem is to estimate the random faults, over a finite horizon, such that the influence from the exogenous disturbances onto the estimation errors is attenuated at the given level quantified by an H∞-norm in the mean square sense. By using the completing squares method and stochastic analysis techniques, necessary and sufficient conditions are established for the existence of the desired finite-horizon H∞ fault estimator whose parameters are then obtained by solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the effectiveness of the proposed fault estimation method

    Practical solutions to multivariate feedback control performance assessment problem: reduced a priori knowledge of interactor matrices

    No full text
    Abstract The research on control loop performance monitoring and diagnostics has been and remains to be one of the most active research areas in process control community. Despite of numerous developments, it remains as a considerably challenging problem to obtain a minimum variance control benchmark from routine operating data for multivariable process since the solution relies on the interactor matrix (or inverse time delay matrix). Knowing the interactor matrix is tantamount to knowing a complete knowledge of process models that are either not available or not accurate enough for a meaningful calculation of the benchmark. However, the order of an interactor matrix (OIM) for a multivariable process, a scalar measure of multivariate time delay, is a relatively simple parameter to know or estimate a priori. This paper investigates the possibility to estimate a suboptimal multivariate control benchmark from routine operating data if the OIM is available. The relation between this suboptimal benchmark and the true multivariate minimum variance control benchmark is investigated. Analytical expressions for the lower and upper bounds of the true multivariate minimum variance are derived. Although not minimum variance control, this benchmark answers important practical questions like ''at least how much potential of the improvement does the control have by tuning or redesigning?'' It is further shown that the proposed suboptimal benchmark is achievable by a practical control provided that the system of interest is minimum phase. Simulation examples illustrate the feasibility of the proposed approach

    Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities subject to output quantization

    Get PDF
    Copyright @ 2014 Elsevier Ltd. All rights reserved.This paper deals with the finite-horizon reliable H∞ output feedback control problem for a class of discrete time-varying systems with randomly occurring uncertainties (ROUs), randomly occurring nonlinearities (RONs) as well as measurement quantizations. Both the deterministic actuator failures and probabilistic sensor failures are considered in order to reflect the reality. The actuator failure is quantified by a deterministic variable varying in a given interval and the sensor failure is governed by an individual random variable taking value on [0,1]. Both the nonlinearities and the uncertainties enter into the system in random ways according to Bernoulli distributed white sequences with known conditional probabilities. The main purpose of the problem addressed is to design a time-varying output feedback controller over a given finite horizon such that, in the simultaneous presence of ROUs, RONs, actuator and sensor failures as well as measurement quantizations, the closed-loop system achieves a prescribed performance level in terms of the H∞-norm. Sufficient conditions are first established for the robust H∞ performance through intensive stochastic analysis, and then a recursive linear matrix inequality approach is employed to design the desired output feedback controller achieving the prescribed H∞ disturbance rejection level. A numerical example is given to demonstrate the effectiveness of the proposed design scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61134009, 61273156, 61333012, 61422301 and 61374127, the Scientific and Technology Research Foundation of Heilongjiang Education Department of China under Grant 12541061, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K., the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Fault Detection Filter Design for LTI System with Time Delays

    Get PDF
    This paper deals with the fault detection filter design problem for linear time invariant time-delay systems with unknown input. The core of our study is to a) take the behavior of delayed state and measurement into consideration when the observer-based fault detection filter is constructed; b) solve the formulated fault detection filter design problem by combining of using the left eigenstmcture assignment approach and H ∞ optimization technique. Through a suitable choice of the filter gain matrices and residual weighting matrix, the residual can be completely decoupled from the delay-free unknown input, while the influence of the delayed unknown input on residual is mimmized in the sense of H ∞ norm. Numerical simulation is used to illustrate the efficiency of the proposed method.published_or_final_versio

    A novel single-phase voltage sag restorer with diode-clamped multilevel bridge

    Get PDF
    Author name used in this publication: K. DingAuthor name used in this publication: K. W. E. ChengAuthor name used in this publication: X. D. XueAuthor name used in this publication: C. D. XuVersion of RecordPublishe

    A survey on distributed filtering and fault detection for sensor networks

    Get PDF
    Copyright © 2014 Hongli Dong et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research on large-scale networked systems has gained an increasing attention from multiple disciplines including engineering, computer science, and mathematics. Lying in the core part of the area are the distributed estimation and fault detection problems that have recently been attracting growing research interests. In particular, an urgent need has arisen to understand the effects of distributed information structures on filtering and fault detection in sensor networks. In this paper, a bibliographical review is provided on distributed filtering and fault detection problems over sensor networks. The algorithms employed to study the distributed filtering and detection problems are categorised and then discussed. In addition, some recent advances on distributed detection problems for faulty sensors and fault events are also summarized in great detail. Finally, we conclude the paper by outlining future research challenges for distributed filtering and fault detection for sensor networks. © 2014 Hongli Dong et al

    On H∞ Estimation of Randomly Occurring Faults for a class of nonlinear time-varying systems with fading channels

    Get PDF
    This technical note is concerned with the finite-horizon H∞ fault estimation problem for a class of nonlinear stochastic time-varying systems with both randomly occurring faults and fading channels. The system model (dynamical plant) is subject to Lipschitz-like nonlinearities and the faults occur in a random way governed by a set of Bernoulli distributed white sequences. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a time-varying fault estimator such that, in the presence of channel fading and randomly occurring faults, the influence from the exogenous disturbances onto the estimation errors is attenuated at the given level quantified by a H∞-norm in the mean square sense. By utilizing the stochastic analysis techniques, sufficient conditions are established to ensure that the dynamic system under consideration satisfies the prespecified performance constraint on the fault estimation, and then a recursive linear matrix inequality approach is employed to design the desired fault estimator gains. Simulation results demonstrate the effectiveness of the developed fault estimation design scheme

    Genetic diversity of reared N-miichthioides population

    Get PDF
    The genetic diversity of 30 reared Nibea miichthioides individuals was analyzed by random amplified polymorphic DNA (RAPD) with 20 random primers. The result showed that the genetic diversity of reared individuals was relatively low with 15.31% polymorphism and 0.031 9 of the average difference (AD). The result also indicated that RAPD is a useful way in genetic diversity analysis of fish population
    corecore