1,160 research outputs found

    Kinetics on the Microbal Scale

    Get PDF
    Paper by H. A. Dean

    Comparative study of semiclassical approaches to quantum dynamics

    Full text link
    Quantum states can be described equivalently by density matrices, Wigner functions or quantum tomograms. We analyze the accuracy and performance of three related semiclassical approaches to quantum dynamics, in particular with respect to their numerical implementation. As test cases, we consider the time evolution of Gaussian wave packets in different one-dimensional geometries, whereby tunneling, resonance and anharmonicity effects are taken into account. The results and methods are benchmarked against an exact quantum mechanical treatment of the system, which is based on a highly efficient Chebyshev expansion technique of the time evolution operator.Comment: 32 pages, 8 figures, corrected typos and added references; version as publishe

    Daily step count of British military males with bilateral lower limb amputations: A comparison of in-patient rehabilitation with the consecutive leave period between admissions

    Get PDF
    © The International Society for Prosthetics and Orthotics 2018. Background: Reduced function and health in individuals with lower limb amputation is well documented. Step count measurement could facilitate rehabilitation and help monitor functional health outcomes. Objectives: To determine whether mean daily step count changed between in-patient rehabilitation and consecutive leave periods. Study Design: Observational study. Methods: Nine individuals with bilateral traumatic amputations attending rehabilitation at the Defence Medical Rehabilitation Centre during a 4-month period were invited to participate in the study (two bilateral transfemoral, two bilateral transfemoral/knee disarticulation, two transfemoral/transtibial, one bilateral transfemoral plus transradial, one bilateral transfemoral plus transhumeral and one transfemoral/transtibial/transradial). Prostheses worn by each participant were fitted with an activity monitor (LAM2 TM ; PAL Technologies Ltd, Glasgow). Mean daily step count was analysed for each participant following 2 weeks in-patient rehabilitation and consecutive 2 weeks away from rehabilitation. Results: Nine participants completed the study (time since injury: 19 ± 7 months, age: 26 ± 6 years). Mean daily step count significantly decreased from 2258 ± 192 during in-patient rehabilitation to 1387 ± 363 at home (p < 0.01). Conclusion: The step count decreased when away from rehabilitation, confirming the hypothesis that the mean daily step count would change between in-patient rehabilitation and consecutive leave period. Clinical relevance: These data provide an indication of the step count achievable by young, military male personnel with bilateral lower limb amputations and highlights differences between intensive in-patient rehabilitation and consecutive leave periods. It is suggested that further investigation and support of clinical monitoring could facilitate rehabilitation tailored to the individual

    Minimax estimation of the Wigner function in quantum homodyne tomography with ideal detectors

    Get PDF
    We estimate the quantum state of a light beam from results of quantum homodyne measurements performed on identically prepared pulses. The state is represented through the Wigner function, a ``quasi-probability density'' on R2\mathbb{R}^{2} which may take negative values and must respect intrinsic positivity constraints imposed by quantum physics. The data consists of nn i.i.d. observations from a probability density equal to the Radon transform of the Wigner function. We construct an estimator for the Wigner function, and prove that it is minimax efficient for the pointwise risk over a class of infinitely differentiable functions. A similar result was previously derived by Cavalier in the context of positron emission tomography. Our work extends this result to the space of smooth Wigner functions, which is the relevant parameter space for quantum homodyne tomography.Comment: 15 page

    A Theory of Common Dealing with the Internet as an Innovative Distribution Channel

    Get PDF
    After the emergence of the Internet, an interesting question arises that what is its impact on the firms’ channel and pricing strategies. This paper applies game theory to study the strategic interactions between rational manufacturers, retailers, and consumers, and it generates the following results: 1. The presence of the Internet allows imperfectly competitive manufacturers to better coordinate their pricing, targeting, and channel strategies, thereby minimizing the agency costs involved in common dealing at the traditional outlets, which in turn enhances the manufacturers’ profits. 2. Exclusive dealing may and may not become more prevalent in the presence of the Internet. It all depends on the ratio of the population of switchers to the entire population of consumers. 3. The presence of the Internet allows a monopolistic manufacturer to screen consumers by serving different people at different outlets. Screening is less effective, however, in the case of imperfect competition. 4. A dynamic adjustment process is obtained which describes how a manufacturer should optimally change his channel and pricing strategies when the population of the Internet purchasers grows over time

    Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Get PDF
    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions

    The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Get PDF
    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications
    corecore