32 research outputs found

    Nanocoolants for engine cooling system

    Get PDF
    The automobile industry is constantly looking for increasing engine efficiency while complying with stringent emission norms. One such aspect studied in great detail is the effect of engine coolant temperature on fuel efficiency and emissions. It has been shown that coolant is responsible for maintaining the engine at optimum operating temperatures in addition to warming up the engine at start. In view of this, nanofluids have been proposed as potential replacement for conventional coolants based on their extra-ordinary lab-scale performance, however studies reported in literature are inadequate to predict the effect of nanofluids in automobiles. We have developed a process for large scale production of stable nanofluids using high energy milling. Using this top down approach, we have converted commercial engine coolants into nanocoolants. This study presents a comparison between commercial coolants and nanocoolants with respect to break specific fuel consumption (bsfc), log mean temperature difference (LMTD) of the heat exchanger (radiator) circuit, amount of NOx (ppm) and O2 (% vol.) in the exhaust gas. This study is performed on a three cylinder, direct injection, 38.5 bhp diesel engine test rig equipped with a hydraulic dynamometer. Addition of nanoparticles exhibits an enhancement of about 2-3% in LMTD, while brake specific fuel consumption and extent of oxygen in the exhaust gas decreases when nanocoolant is used.Papers presented to the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Costa de Sol, Spain on 11-13 July 2016

    Genetic dissection of plant growth habit in chickpea

    Get PDF
    A combinatorial genomics-assisted breeding strategy encompassing association analysis, genetic mapping and expression profiling is found most promising for quantitative dissection of complex traits in crop plants. The present study employed GWAS (genome-wide association study) using 24,405 SNPs (single nucleotide polymorphisms) obtained with genotyping-by-sequencing (GBS) of 92 sequenced desi and kabuli accessions of chickpea. This identified eight significant genomic loci associated with erect (E)/semi-erect (SE) vs. spreading (S)/semi-spreading (SS)/prostrate (P) plant growth habit (PGH) trait differentiation regardless of diverse desi and kabuli genetic backgrounds of chickpea. These associated SNPs in combination explained 23.8% phenotypic variation for PGH in chickpea. Five PGH-associated genes were validated successfully in E/SE and SS/S/P PGH-bearing parental accessions and homozygous individuals of three intra- and interspecific RIL (recombinant inbred line) mapping populations as well as 12 contrasting desi and kabuli chickpea germplasm accessions by selective genotyping through Sequenom MassARRAY. The shoot apical, inflorescence and floral meristems-specific expression, including upregulation (seven-fold) of five PGH-associated genes especially in germplasm accessions and homozygous RIL mapping individuals contrasting with E/SE PGH traits was apparent. Collectively, this integrated genomic strategy delineated diverse non-synonymous SNPs from five candidate genes with strong allelic effects on PGH trait variation in chickpea. Of these, two vernalization-responsive non-synonymous SNP alleles carrying SNF2 protein-coding gene and B3 transcription factor associated with PGH traits were found to be the most promising in chickpea. The SNP allelic variants associated with E/SE/SS/S PGH trait differentiation were exclusively present in all cultivated desi and kabuli chickpea accessions while wild species/accessions belonging to primary, secondary and tertiary gene pools mostly contained prostrate PGH-associated SNP alleles. This indicates strong adaptive natural/artificial selection pressure (Tajima's D 3.15 to 4.57) on PGH-associated target genomic loci during chickpea domestication. These vital leads thus have potential to decipher complex transcriptional regulatory gene function of PGH trait differentiation and for understanding the selective sweep-based PGH trait evolution and domestication pattern in cultivated and wild chickpea accessions adapted to diverse agroclimatic conditions. Collectively, the essential inputs generated will be of profound use in marker-assisted genetic enhancement to develop cultivars with desirable plant architecture of erect growth habit types in chickpea

    Genome-wide generation and genotyping of informative SNPs to scan molecular signatures for seed yield in chickpea

    Get PDF
    We discovered 2150 desi and 2199 kabuli accessions-derived SNPs by cultivar-wise individual assembling of sequence-reads generated through genotyping-by-sequencing of 92 chickpea accessions. Subsequent large-scale validation and genotyping of these SNPs discovered 619 desi accessions-derived (DAD) SNPs, 531 kabuli accessions-derived (KAD) SNPs, 884 multiple accessions-derived (MAD) SNPs and 1083 two accessions (desi ICC 4958 and kabuli CDC Frontier)-derived (TAD) SNPs that were mapped on eight chromosomes. These informative SNPs were annotated in coding/non-coding regulatory sequence components of genes. The MAD-SNPs were efficient to detect high intra-specific polymorphic potential and wide natural allelic diversity level including high-resolution admixed-population genetic structure and precise phylogenetic relationship among 291 desi and kabuli accessions. This signifies their effectiveness in introgression breeding and varietal improvement studies targeting useful agronomic traits of chickpea. Six trait-associated genes with SNPs including quantitative trait nucleotides (QTNs) in combination explained 27.5% phenotypic variation for seed yield per plant (SYP). A pentatricopeptide repeat (PPR) gene with a synonymous-coding SNP/QTN significantly associated with SYP trait was found most-promising in chickpea. The essential information delineated can be of immense utility in genomics-assisted breeding applications to develop high-yielding chickpea cultivars

    Integrative genome-wide association studies (GWAS) to understand complex genetic architecture of quantitative traits in chickpea

    Get PDF
    Development of high-yielding stress-tolerant chickpea cultivars is essential to enhance its yield potential and productivity amidst climate change scenario. Unfortunately, superior lines/recombinants producing higher pod and seed yield under stress are not available in world chickpea collection. Therefore, genetic dissection of complex stress tolerance and yield-contributing quantitative traits is the prime objective in current chickpea genomics and breeding research. Our study employed diverse GWAS-assisted integrated genomic strategies involving classical genetic inheritance analysis, QTL mapping, differential transcript profiling, molecular haplotyping and haplotype-based gene domestication/ evolution study for rapid quantitative dissection of complex yield and stress tolerance traits in chickpea. To accomplish this, multi-location/years replicated yield traits-related field phenotyping and high-throughput marker genotyping information generated from numerous natural germplasm accessions (association panel) and multiple intra- and inter-specific mapping populations of chickpea were deployed in the aforesaid combinatorial genomic approaches. These analyses delineated 12 novel alleles and six haplotypes from 10 transcription factor genes and 16 major QTLs/eQTLs governing yield and stress tolerance traits that were mapped on 10 ultra-high density chickpea genetic linkage maps. The superior natural alleles/haplotypes of two major genes (QTLs) regulating seed weight and pod/seed number identified from cultivated and wild Cicer gene pools are being introduced into multiple high-yielding Indian varieties of chickpea for its marker-assisted genetic improvement. The potential molecular signatures delineated using integrated genomics- assisted breeding strategies have functional significance to understand the molecular genetic mechanism and natural allelic diversity-led domestication pattern underlying these complex quantitative traits at a genome-wide scale, leading to fast-paced translational genomics for chickpea genetic enhancement. These essential outcomes will be useful for devising the most efficient strategies to produce high-yielding climate-resilient chickpea cultivars for sustaining global food security

    Identifying Transcription Factor Genes Associated with Yield Traits in Chickpea

    Get PDF
    Identification of potential transcription factor (TF) gene-derived natural SNP allelic variants regulating pod and seed yield component traits by large-scale mining and genotyping of SNPs in natural germplasm accessions coupled with high-resolution association mapping is vital for understanding the complex genetic architecture of quantitative yield traits in chickpea. In these perspectives, the current study employed a genome-wide GBS (genotyping-by-sequencing) and targeted gene amplicon resequencing-based simultaneous SNP discovery and genotyping assays, which discovered 1611 novel SNPs from 736 TF genes physically mapped on eight chromosomes and unanchored scaffolds of kabuli chickpea genome. These SNPs were structurally and functionally annotated in diverse synonymous and non-synonymous coding as well as non-coding regulatory and intronic sequence components of chickpea TF genes. A high-resolution genetic association analysis was performed by correlating the genotyping information of 1611 TF gene-based SNPs with multi-location/years field phenotyping data of six major pod and seed yield traits evaluated in a constituted association panel (326 desi and kabuli germplasm accessions) of chickpea. This essentially identified 27 TF gene-derived SNPs exhibiting significant association with six major yield traits, namely days to 50% flowering (DF), plant height (PH), branch number (BN), pod number (PN), seed number (SN) and seed weight (SW) in chickpea. These trait-associated SNPs individually and in combination explained 10ā€“23% and 32% phenotypic variation respectively for the studied yield component traits. Interestingly, novel non-synonymous coding SNP allelic variants in five potential candidate TF genes encoding SBP (squamosal promoter binding protein), SNF2 (sucrose non-fermenting 2), GRAS [Gibberellic acid insensitive (GAI)-Repressor of GAI (RGA)-SCARECROW (SCR)], bZIP (basic leucine zipper) and LOB (lateral organ boundaries)-domain proteins associated strongly with DF, PH, BN, PN, SN and SW traits respectively were found most promising in chickpea. The functionally relevant molecular signatures (TFs and natural SNP alleles) delineated by us have potential to accelerate marker-assisted genetic enhancement by developing high pod and seed yielding cultivars of chickpea

    Transcriptional signatures modulating shoot apical meristem morphometric and plant architectural traits enhance yield and productivity in chickpea

    Get PDF
    Plant height (PH) and plant width (PW), two of the major plant architectural traits determining the yield and productivity of a crop, are defined by diverse morphometric characteristics of the shoot apical meristem (SAM). The identification of potential molecular tags from a single gene that simultaneously modulates these plant/SAM architectural traits is therefore prerequisite to achieve enhanced yield and productivity in crop plants, including chickpea. Largeā€scale multienvironment phenotyping of the association panel and mapping population have ascertained the efficacy of three vital SAM morphometric trait parameters, SAM width, SAM height and SAM area, as key indicators to unravel the genetic basis of the wide PW and PH trait variations observed in desi chickpea. This study integrated a genomeā€wide association study (GWAS); quantitative trait locus (QTL)/fineā€mapping and mapā€based cloning with molecular haplotyping; transcript profiling; and proteinā€DNA interaction assays for the dissection of plant architectural traits in chickpea. These exertions delineated natural alleles and superior haplotypes from a CabHLH121 transcription factor (TF) gene within the major QTL governing PW, PH and SAM morphometric traits. A genomeā€wide proteinā€DNA interaction assay assured the direct binding of a known stem cell master regulator, CaWUS, to the WOXā€homeodomain TF binding sites of a CabHLH121 gene and its constituted haplotypes. The differential expression of CaWUS and transcriptional regulation of its target CabHLH121 gene/haplotypes were apparent, suggesting their collective role in altering SAM morphometric characteristics and plant architectural traits in the contrasting near isogenic lines (NILs). The NILs introgressed with a superior haplotype of a CabHLH121 exhibited optimal PW and desirable PH as well as enhanced yield and productivity without compromising any component of agronomic performance. These molecular signatures of the CabHLH121 TF gene have the potential to regulate both PW and PH traits through the modulation of proliferation, differentiation and maintenance of the meristematic stem cell population in the SAM; therefore, these signatures will be useful in the translational genomic study of chickpea genetic enhancement. The restructured cultivars with desirable PH (semidwarf) and PW will ensure maximal planting density in a specified cultivable field area, thereby enhancing the overall yield and productivity of chickpea. This can essentially facilitate the achievement of better remunerative outputs by farmers with rational land use, therefore ensuring global food security in the present scenario of an increasing population density and shrinking per capita land area

    Identification of sorghum genotypes with resistance to the sugarcane aphid Melanaphis sacchari under natural and artificial infestation

    Get PDF
    Sugarcane aphid, Melanaphis sacchari is an endemic pest of sorghum during postrainy season, and there is a need to develop cultivars with resistance to this pest. Evaluation of a diverse array of sorghum genotypes under natural and artificial infestation resulted in identification of seven lines (ICSB 215, ICSB 323, ICSB 724, ICSR 165, ICSV 12001, ICSV 12004 and IS 40615) with moderate levels of resistance to aphid damage. Under artificial infestation, 10 lines suffered 30 q/ha). In another experiment, ICSB 215, ICSB 695, ICSR 161, Line 61510, ICSV 12004, Parbhani Moti and IS 40618 exhibited high grain yield potential (>25 q/ha) and exhibited <50% variation in grain yield as compared to more than 80% in the susceptible check, in CK 60 B. The genotypes RSV 1211, RS 29, RSV 1338, EC 8-2, PU 10-1, IS 40617 and ICSB 695 though showed a susceptible reaction to aphid damage, but suffered relatively low loss in grain yield, suggesting that these lines have tolerance to aphid damage. Principal coordinate analysis suggested that the genotypes with aphid resistance are quite diverse and can be used to breed for aphid resistance and high grain yield potential and also in breeding for aphid resistance in sorghum with adaptation to the postrainy season

    CLAVATA signaling pathway genes modulating flowering time and flower number in chickpea

    Get PDF
    Unraveling the genetic components involved in CLAVATA (CLV) signaling is crucial for modulating important shoot apical meristem (SAM) characteristics and ultimately regulating diverse SAM-regulated agromorphological traits in crop plants. A genome-wide scan identified 142 CLV1-, 28 CLV2- and 6 CLV3-like genes, and their comprehensive genomic constitution and phylogenetic relationships were deciphered in chickpea. The QTL/fine mapping and map-based cloning integrated with high-resolution association analysis identified SNP loci from CaCLV3_01 gene within a major CaqDTF1.1/CaqFN1.1 QTL associated with DTF (days to 50% flowering) and FN (flower number) traits in chickpea, which was further ascertained by quantitative expression profiling. Molecular haplotyping of CaCLV3_01 gene, expressed specifically in SAM, constituted two major haplotypes that differentiated the early-DTF and high-FN chickpea accessions from late-DTF and low-FN. Enhanced accumulation of transcripts of superior CaCLV3_01 gene haplotype and known flowering promoting genes was observed in the corresponding haplotype-introgressed early-DTF and high-FN near-isogenic lines (NILs) with narrow SAM width. The superior haplotype-introgressed NILs exhibited early-flowering, high-FN and enhanced seed yield/productivity without compromising agronomic performance. These delineated molecular signatures can regulate DTF and FN traits through SAM proliferation and differentiation and thereby will be useful for translational genomic study to develop early-flowering cultivars with enhanced yield/productivity

    Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea

    Get PDF
    Understanding the genetic basis of photosynthetic efficiency (PE) contributing to enhanced seed yield per plant (SYP) is vital for genomicsā€assisted crop improvement of chickpea. The current study employed an integrated genomic strategy involving photosynthesis pathway geneā€based association mapping, genomeā€wide association study, QTL mapping and expression profiling. This identified 16 potential SNP loci linked to major QTLs underlying 16 candidate genes significantly associated with PE and SYP traits in chickpea. The allelic variants were tightly linked to positively interacting QTLs regulating both enhanced PE and SYP traits as exemplified by a chlorophyll Aā€B binding proteinā€coding gene. The leaf tissueā€specific pronounced upā€regulated expression of 16 associated genes in germplasm accessions and homozygous individuals of mapping population was evident. Such combinatorial genomic strategy coupled with gene haplotypeā€specific association as well as in silico proteinā€protein interaction study delineated natural alleles and superior haplotypes from a chlorophyll Aā€B binding proteinā€coding gene and its interacting gene, Timing of CAB Expression 1, which appear to be mostā€promising candidates in modulating chickpea PE and SYP traits. These functionally pertinent molecular signatures identified have efficacy to drive markerā€assisted selection for developing PEā€enriched cultivars with high seed yield in chickpea
    corecore