32 research outputs found
Evaluating a microalga (Schizochytrium sp.) as an alternative to fish oil in fish-free feeds for sablefish (Anoplopoma fimbria)
Alternative feeds are critical for the sustainable expansion of the marine finfish aquaculture industry. The industry uses wild-caught forage fish as a primary ingredient in farmed fish feeds. Alternative ingredients are needed to safeguard fisheries\u27 sustainability and future aquaculture development. While there have been successes in alternative feeds, it is necessary to improve the existing options and identify alternative ingredients with higher concentrations of omega-3 polyunsaturated fatty acids (PUFAs). This study was designed to test a microalga, Schizochytrium sp., as a feed ingredient for sablefish (Anoplopoma fimbria) using six test diets. There were two fish-ingredient control diets: +FM+FO, which contained both fishmeal and fish oil, and −FM+FO, which contained fish oil, but no fishmeal. The remaining four diets contained alternative lipids and were completely fish-free. FF Flax contained flax oil as the only lipid source replacing fish oil. FF LowSc, FF ModSc, and FF HighSc contained a low, moderate, and high level of Schizochytrium sp. to replace fish oil, with flax oil content decreasing as the microalga increased. After a 20-week trial, sablefish growth differed across the feed treatments, with fish fed the high microalga-inclusion diet (FF HighSc) performing similarly to fish fed the fish-ingredient controls. Fulton\u27s K condition factor, dry feed intake (DFI), and lipid productive value (LPV) were also influenced by treatment. For the four fish-free diets, specific growth rate increased with increasing inclusion of Schizochytrium sp. in the feed. Fillet fatty acid profiles were similarly influenced by diet treatment, generally reflecting the fatty acid profiles of the feed. Total fillet PUFAs were higher in sablefish from the fish-free treatments than the control treatments, with DHA increasing with increasing inclusion of dietary Schizochytrium. In contrast, EPA was higher in fillets from both fish-ingredient control treatments compared to fillets from the fish-free treatments, yet EPA remained higher than expected in sablefish fed the fish-free diets. Histologic evaluation of sablefish distal intestine and liver demonstrated that the microalga-inclusion diets were well tolerated and did not cause histomorphological changes in the tissues. These results suggest Schizochytrium sp. can increase PUFA concentrations in fish fillets without compromising fish health and growth, making it a viable ingredient for alternative sablefish feeds
A real-time polymerase chain reaction assay for identification and quantification of<i>Flavobacterium psychrophilum</i>and application to disease resistance studies in selectively bred rainbow trout<i>Oncorhynchus mykiss</i>
Effects of processing full‐fat soya beans and fish trim for sustainable sablefish<i>Anoplopoma fimbria</i>feeds
Proteomic characterization of the acute-phase response of yellow stingrays Urobatis jamaicensis after injection with a Vibrio anguillarum-ordalii bacterin
Systemic inflammatory responses of mammals and bony fish are primarily driven by coordinated up-regulation and down-regulation of plasma acute-phase proteins. Although this general principle is believed to be universal among vertebrates, it remains relatively unexplored in elasmobranchs. The objective of this study was to characterize acute changes in the plasma proteome of three yellow stingrays Urobatis jamaicensis following intraperitoneal injection with a commercial Vibrio bacterin. Changes in plasma protein levels were analyzed immediately prior to vaccination (time 0) and at 24 and 72 h post-injection by isobaric tags for relative and absolute quantitation (iTRAQ 4-plex) using shotgun-based nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and de novo peptide sequencing. Pooled 2D-LC-MS/MS and de novo sequencing data revealed differential expression of 156 distinct plasma proteins between time 0 and at least one post-vaccination time point. Using 1.5-fold change in expression as physiologically significant, 14/156 (9.0%) proteins were upregulated in at least one stingray through at least one experimental timepoint. Upregulated proteins included complement factors, Mx-protein, hemopexin, factor X and prothrombin. Seventy-six of 156 (48.7%) proteins were downregulated in the acute-phase response, including transferrin, apolipoprotein B, heparin cofactor 2, alpha2-macroglobulin, and various growth factors. Other differentially upregulated or downregulated proteins included intracellular, cell binding and structural proteins, proteins involved in physiologic processes, and unknown/hypothetical proteins. Selected bioactive factors are discussed for their putative roles in the elasmobranchs acute-phase response. These findings contribute to our understanding of disease processes in elasmobranchs, immunologic phylogeny in vertebrates, and begin the search for potential biomarkers of disease in these ecologically important fish
Reduction of rainbow trout spleen size by splenectomy does not alter resistance against bacterial cold water disease
Validation of linked QTL for bacterial cold water disease resistance and spleen size on rainbow trout chromosome Omy19
Organic ultraviolet filters in nearshore waters and in the invasive lionfish (Pterois volitans) in Grenada, West Indies
A BCWD-resistant line of rainbow trout exhibits higher abundance of IgT+ B cells and heavy chain tau transcripts compared to a susceptible line following challenge with Flavobacterium psychrophilum
Measuring of the effects of a sea turtle conservation education program on children's knowledge and attitudes in Grenada, West Indies
Plasma proteomics of green turtles (<i>Chelonia mydas</i>) reveals pathway shifts and potential biomarker candidates associated with health and disease
AbstractEvaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective biomarker targets. A TMT-10-plex-LC–MS/MS platform was used to characterize the plasma proteome of five, juvenile, green turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states. The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins (0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and rehabilitation programs for these ecologically important species.</jats:p
