5,002 research outputs found

    The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitised solar cells

    Get PDF
    Improving the efficiency of p-type dye-sensitized solar cells (DSCs) is an important part of the development of high performance tandem DSCs. The optimization of the conversion efficiency of p-DSCs could make a considerable contribution in the improvement of solar cells at a molecular level. Nickel oxide is the most widely used material in p-DSCs, due to its ease of preparation, chemical and structural stability, and electrical properties. However, improvement of the quality and conductivity of NiO based photocathodes needs to be achieved to bring further improvements to the solar cell efficiency. The subject of this review is to consider the effect of the preparation of NiO surfaces on their efficiency as photocathodes. (C) 2015 Elsevier B.V. All rights reserved

    Maars to calderas. End-members on a spectrum of explosive volcanic depressions

    Get PDF
    We discuss maar-diatremes and calderas as end-members on a spectrum of negative volcanic landforms (depressions) produced by explosive eruptions (note—we focus on calderas formed during explosive eruptions, recognizing that some caldera types are not related to such activity). The former are dominated by ejection of material during numerous discrete phreatomagmatic explosions, brecciation, and subsidence of diatreme fill, while the latter are dominated by subsidence over a partly evacuated magma chamber during sustained, magmatic volatile-driven discharge. Many examples share characteristics of both, including landforms that are identified as maars but preserve deposits from non-phreatomagmatic explosive activity, and ambiguous structures that appear to be coalesced maars but that also produced sustained explosive eruptions with likely magma reservoir subsidence. A convergence of research directions on issues related to magma-water interaction and shallow reservoir mechanics is an important avenue toward developing a unified picture of the maar-diatreme-caldera spectrum

    Nickel oxide photocathodes prepared using rapid discharge sintering for p-type dye-sensitized solar cells

    Get PDF
    This paper compares the photoelectrochemical performances of nickel oxide (NiO) thin films processed using two different sintering procedures: rapid discharge sintering (RDS) and conventional furnace sintering (CS). Prior to sintering, NiO nanoparticles were sprayed onto substrates to form loosely adherent nanoparticulate coatings. After RDS and furnace sintering the resultant NiO coatings were sensitized with erythrosine B dye and corresponding p-type dyesensitized solar cells were fabricated and characterized. NiO electrodes fabricated using the RDS technique exhibited a fourfold enhancement in electroactivity compared to CS electrodes. A possible explanation is the smaller sintered grain size and more open mesoporous structure achieved using the microwave plasma treatments
    • …
    corecore