84 research outputs found

    Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography

    Full text link
    Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis

    Combining evolutionary inference and metabolomics to identify plants with medicinal potential

    Get PDF
    Plants have been a source of medicines in human cultures for millennia. The past decade has seen a decline in plant-derived medicines due to the time-consuming nature of screening for biological activity and a narrow focus on individual candidate plant taxa. A phylogenetically informed approach can be both more comprehensive in taxonomic scope and more systematic, because it allows identification of evolutionary lineages with higher incidence of medicinal activity. For these reasons, phylogenetics is being increasingly applied to the identification of novel botanic sources of medicinal compounds. These biologically active compounds are normally derived from plant secondary or specialized metabolites generally produced as induced responses and often playing a crucial role in plant defense against herbivores and pathogens. Since these compounds are typically bioactive they serendipitously offer potential therapeutic properties for humans, resulting in their use by traditional societies and ultimately drug lead development by natural product chemists and pharmacologists. The expression of these metabolites is likely the result of coevolutionary processes between plants and the other species with which they interact and effective metabolites are thus selected upon through evolution. Recent research on plant phylogeny coupled with metabolomics, which is the comprehensive analysis of metabolite profiles, has identified that related taxa produce similar secondary metabolites, although correlations are dependent also on environmental factors. Modern mass spectrometry and bioinformatic chemical networking tools can now assist high throughput screening to discover structurally related and potentially new bioactive compounds. The combination of these metabolomic approaches with phylogenetic comparative analysis of the expression of metabolites across plant taxa could therefore greatly increase our capacity to identify taxa for medicinal potential. This review examines the current status of identification of new plant sources of medicine and the current limitations of identifying plants as drug candidates. It investigates how ethnobotanic knowledge, phylogenetics and novel approaches in metabolomics can be partnered to help in characterizing taxa with medicinal potential

    A quantitative profiling method of phytohormones and other metabolites applied to barley roots subjected to salinity stress

    Get PDF
    As integral parts of plant signaling networks, phytohormones are involved in the regulation of plant metabolism and growth under adverse environmental conditions, including salinity. Globally, salinity is one of the most severe abiotic stressors with an estimated 800 million hectares of arable land affected. Roots are the first plant organ to sense salinity in the soil, and are the initial site of sodium (Na + ) exposure. However, the quantification of phytohormones in roots is challenging, as they are often present at extremely low levels compared to other plant tissues. To overcome this challenge, we developed a high-throughput LC-MS method to quantify ten endogenous phytohormones and their metabolites of diverse chemical classes in roots of barley. This method was validated in a salinity stress experiment with six barley varieties grown hydroponically with and without salinity. In addition to phytohormones, we quantified 52 polar primary metabolites, including some phytohormone precursors, using established GC-MS and LC-MS methods. Phytohormone and metabolite data were correlated with physiological measurements including biomass, plant size and chlorophyll content. Root and leaf elemental analysis was performed to determine Na + exclusion and K + retention ability in the studied barley varieties. We identified distinct phytohormone and metabolite signatures as a response to salinity stress in different barley varieties. Abscisic acid increased in the roots of all varieties under salinity stress, and elevated root salicylic acid levels were associated with an increase in leaf chlorophyll content. Furthermore, the landrace Sahara maintained better growth, had lower Na + levels and maintained high levels of the salinity stress linked metabolite putrescine as well as the phytohormone metabolite cinnamic acid, which has been shown to increase putrescine concentrations in previous studies. This study highlights the importance of root phytohormones under salinity stress and the multi-variety analysis provides an important update to analytical methodology, and adds to the current knowledge of salinity stress responses in plants at the molecular level

    A simple method for measuring carbon-13 fatty acid enrichment in the major lipid classes of microalgae using GC-MS

    Full text link
    A simple method for tracing carbon fixation and lipid synthesis in microalgae was developed using a combination of solid-phase extraction (SPE) and negative ion chemical ionisation gas chromatography mass spectrometry (NCI-GC-MS). NCI-GC-MS is an extremely sensitive technique that can produce an unfragmented molecular ion making this technique particularly useful for stable isotope enrichment studies. Derivatisation of fatty acids using pentafluorobenzyl bromide (PFBBr) allows the coupling of the high separation efficiency of GC and the measurement of unfragmented molecular ions for each of the fatty acids by single quadrupole MS. The key is that isotope spectra can be measured without interference from co-eluting fatty acids or other molecules. Pre-fractionation of lipid extracts by SPE allows the measurement of13C isotope incorporation into the three main lipid classes (phospholipids, glycolipids, neutral lipids) in microalgae thus allowing the study of complex lipid biochemistry using relatively straightforward analytical technology. The high selectivity of GC is necessary as it allows the collection of mass spectra for individual fatty acids, including cis/trans isomers, of the PFB-derivatised fatty acids. The combination of solid-phase extraction and GC-MS enables the accurate determination of13C incorporation into each lipid pool. Three solvent extraction protocols that are commonly used in lipidomics were also evaluated and are described here with regard to extraction efficiencies for lipid analysis in microalgae

    Prior learning factors impacting success in first year general chemistry

    Get PDF
    Many students find the first semester of tertiary chemistry very challenging. This may be due to having weak backgrounds in chemistry and mathematics, lack of sufficient study time, poor prior teaching or lack of interest in chemistry. Academic staff have implemented various measures to support student engagement and achievement including small group tutorials, a variety of online resources, in-class polling, PASS sessions and weekly online quizzes. In this study we have used a diagnostic survey at the transition to university to investigate students’ prior knowledge in mathematics and chemistry and to establish demographic factors. The results from this survey have been compared with student engagement in various resources and their final scores in the unit in an effort to determine factors that could be used to identify students at risk of failure, and to evaluate the utility of the additional resources offered to students. Gender effects have also been explored

    Global fecal and plasma metabolic dynamics related to Helicobacter pylori eradication

    Get PDF
    Background:Helicobacter pylori colonizes the gastric mucosa of more than half of the world's population. There is increasing evidence H. pylori protects against the development of obesity and childhood asthma/allergies in which the development of these diseases coincide with transient dysbiosis. However, the mechanism underlying the association of H. pylori eradication with human metabolic and immunological disorders is not well-established. In this study, we aimed to investigate the local and systemic effects of H. pylori eradication through untargeted fecal lipidomics and plasma metabolomics approaches by liquid chromatography mass spectrometry (LC-MS). Results: Our study revealed that eradication of H. pylori eradication (i.e., loss of H. pylori and/or H. pylori eradication therapy) changed many global metabolite/lipid features, with the majority being down-regulated. Our findings primarily show that H. pylori eradication affects the host energy and lipid metabolism which may eventually lead to the development of metabolic disorders. Conclusion: These predictive metabolic signatures of metabolic and immunological disorders following H. pylori eradication can provide insights into dynamic local and systemic metabolism related to H. pylori eradication in modulating human health

    Constitutive Overexpression of the OsNAS Gene Family Reveals Single-Gene Strategies for Effective Iron- and Zinc-Biofortification of Rice Endosperm

    Get PDF
    BACKGROUND: Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm. METHODOLOGY/PRINCIPAL FINDINGS: Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm. CONCLUSIONS: The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world.Alexander A. T. Johnson, Bianca Kyriacou, Damien L. Callahan, Lorraine Carruthers, James Stangoulis, Enzo Lombi and Mark Teste

    UNICORN Babies: Understanding Circulating and Cerebral Creatine Levels of the Preterm Infant. An Observational Study Protocol

    Get PDF
    Creatine is an essential metabolite for brain function, with a fundamental role in cellular (ATP) energy homeostasis. It is hypothesized that preterm infants will become creatine deplete in the early postnatal period, due to premature delivery from a maternal source of creatine and a limited supply of creatine in newborn nutrition. This potential alteration to brain metabolism may contribute to, or compound, poor neurological outcomes in this high-risk population. Understanding Creatine for Neurological Health in Babies (UNICORN) is an observational study of circulating and cerebral creatine levels in preterm infants. We will recruit preterm infants at gestational ages 23+0–26+6, 27+0–29+6, 30+0–32+6, 33+0–36+6, and a term reference group at 39+0–40+6 weeks of gestation, with 20 infants in each gestational age group. At birth, a maternal capillary blood sample, as well as a venous cord blood sample, will be collected. For preterm infants, serial infant plasma (heel prick), urine, and nutrition samples [total parenteral nutrition (TPN), breast milk, or formula] will be collected between birth and term “due date.” Key fetomaternal information, including demographics, smoking status, and maternal diet, will also be collected. At term corrected postnatal age (CPA), each infant will undergo an MRI/1H-MRS scan to evaluate brain structure and measure cerebral creatine content. A general movements assessment (GMA) will also be conducted. At 3 months of CPA, infants will undergo a second GMA as well as further neurodevelopmental evaluation using the Developmental Assessment of Young Children – Second Edition (DAYC-2) assessment tool. The primary outcome measures for this study are cerebral creatine content at CPA and plasma and urine creatine and guanidinoacetate (creatine precursor) concentrations in the early postnatal period. We will also determine associations between (1) creatine levels at term CPA and neurodevelopmental outcomes (MRI, GMA, and DAY-C); (2) dietary creatine intake and circulating and cerebral creatine content; and (3) creatine levels and maternal characteristics. Novel approaches are needed to try and improve preterm-associated brain injury. Inclusion of creatine in preterm nutrition may better support ex utero brain development through improved cerebral cellular energy availability during a period of significant brain growth and development.Ethics Ref: HDEC 18/CEN/7 New Zealand.ACTRN: ACTRN12618000871246

    Apicoplast-localized lysophosphatidic acid precursor assembly is required for bulk phospholipid synthesis in toxoplasma gondii and relies on an algal/plant-like glycerol 3-phosphate acyltransferase

    Full text link
    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii
    corecore