181 research outputs found
Theta 13 Determination with Nuclear Reactors
Recently there has been a lot of interest around the world in the use of
nuclear reactors to measure theta 13, the last undetermined angle in the
3-neutrino mixing scenario. In this paper the motivations for theta 13
measurement using short baseline nuclear reactor experiments are discussed. The
features of such an experiment are described in the context of Double Chooz,
which is a new project planned to start data-taking in 2008, and to reach a
sensitivity of sinsq(2 theta 13) < 0.03.Comment: Submission for XXXIXth Rencontres de Moriond, Electroweak
Interactions and Unified Theories, held in La Thuile, Italy, March 2004 (9
pages 4 figures
Dewetting of thin polymer films near the glass transition
Dewetting of ultra-thin polymer films near the glass transition exhibits
unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)].
We present here the first theoretical attempt to understand these features,
focusing on the shear-thinning behaviour of these films. We analyse the profile
of the dewetting film, and characterize the time evolution of the dry region
radius, , and of the rim height, . After a transient time
depending on the initial thickness, grows like while
increases like . Different regimes of growth are
expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review
Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88,
196101 (2002
Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory
The technique used at the Sudbury Neutrino Observatory (SNO) to measure the
concentration of 222Rn in water is described. Water from the SNO detector is
passed through a vacuum degasser (in the light water system) or a membrane
contact degasser (in the heavy water system) where dissolved gases, including
radon, are liberated. The degasser is connected to a vacuum system which
collects the radon on a cold trap and removes most other gases, such as water
vapor and nitrogen. After roughly 0.5 tonnes of H2O or 6 tonnes of D2O have
been sampled, the accumulated radon is transferred to a Lucas cell. The cell is
mounted on a photomultiplier tube which detects the alpha particles from the
decay of 222Rn and its daughters. The overall degassing and concentration
efficiency is about 38% and the single-alpha counting efficiency is
approximately 75%. The sensitivity of the radon assay system for D2O is
equivalent to ~3 E(-15) g U/g water. The radon concentration in both the H2O
and D2O is sufficiently low that the rate of background events from U-chain
elements is a small fraction of the interaction rate of solar neutrinos by the
neutral current reaction.Comment: 14 pages, 6 figures; v2 has very minor change
Slow dynamics near glass transitions in thin polymer films
The -process (segmental motion) of thin polystyrene films supported
on glass substrate has been investigated in a wider frequency range from
10 Hz to 10 Hz using dielectric relaxation spectroscopy and thermal
expansion spectroscopy. The relaxation rate of the -process increases
with decreasing film thickness at a given temperature above the glass
transition. This increase in the relaxation rate with decreasing film thickness
is much more enhanced near the glass transition temperature. The glass
transition temperature determined as the temperature at which the relaxation
time of the -process becomes a macroscopic time scale shows a distinct
molecular weight dependence. It is also found that the Vogel temperature has
the thickness dependence, i.e., the Vogel temperature decreases with decreasing
film thickness. The expansion coefficient of the free volume is
extracted from the temperature dependence of the relaxation time within the
free volume theory. The fragility index is also evaluated as a function of
thickness. Both and are found to decrease with decreasing film
thickness.Comment: 9 pages, 7 figures, and 2 table
Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors
We report on the first measurement of 39Ar in argon from underground natural
gas reservoirs. The gas stored in the US National Helium Reserve was found to
contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be
<=4x10-17 (84% C.L.), less than 5% the value in atmospheric argon
(39Ar/Ar=8x10-16). The total quantity of argon currently stored in the National
Helium Reserve is estimated at 1000 tons. 39Ar represents one of the most
important backgrounds in argon detectors for WIMP dark matter searches. The
findings reported demonstrate the possibility of constructing large multi-ton
argon detectors with low radioactivity suitable for WIMP dark matter searches.Comment: 6 pages, 2 figures, 2 table
A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory
As photodisintegration of deuterons mimics the disintegration of deuterons by
neutrinos, the accurate measurement of the radioactivity from thorium and
uranium decay chains in the heavy water in the Sudbury Neutrino Observatory
(SNO) is essential for the determination of the total solar neutrino flux. A
radium assay technique of the required sensitivity is described that uses
hydrous titanium oxide adsorbent on a filtration membrane together with a
beta-alpha delayed coincidence counting system. For a 200 tonne assay the
detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and
for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and
light water carried out during the first two years of data collection of SNO
are presented.Comment: 12 pages, 4 figure
Pulse-Shape discrimination with the Counting Test Facility
Pulse shape discrimination (PSD) is one of the most distinctive features of
liquid scintillators. Since the introduction of the scintillation techniques in
the field of particle detection, many studies have been carried out to
characterize intrinsic properties of the most common liquid scintillator
mixtures in this respect. Several application methods and algorithms able to
achieve optimum discrimination performances have been developed. However, the
vast majority of these studies have been performed on samples of small
dimensions. The Counting Test Facility, prototype of the solar neutrino
experiment Borexino, as a 4 ton spherical scintillation detector immersed in
1000 tons of shielding water, represents a unique opportunity to extend the
small-sample PSD studies to a large-volume setup. Specifically, in this work we
consider two different liquid scintillation mixtures employed in CTF,
illustrating for both the PSD characterization results obtained either with the
processing of the scintillation waveform through the optimum Gatti's method, or
via a more conventional approach based on the charge content of the
scintillation tail. The outcomes of this study, while interesting per se, are
also of paramount importance in view of the expected Borexino detector
performances, where PSD will be an essential tool in the framework of the
background rejection strategy needed to achieve the required sensitivity to the
solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.
- âŠ