16 research outputs found

    Self-growing motion mechanism for inspection and maintenance

    No full text
    Purpose An inspection and maintenance system is essential to obtain a proper and stable construction. However, internal inspection and maintenance of the inner parts of pipeline are difficult to conduct. Force effects should be eliminated to accurately inspect the state of a pipeline. This paper suggests a self-growing mechanism (SGM) which focuses on a minimization of force effects compared to previous progress maintenance methods. Method SGM mimicks the motion of amoeba, a protozoan, as a growing unit. It is shaped like a reversed hose. The SGM represents gelation and isolation of the amoeba; the inside skin is fixed outside and fluid is injected. In this way contact force is minimized so as to be negligible. By passing through injected fluid, the SGM acts as a buffer. Nevertheless, there is a limit to the use of this instrument for maintenance due to the drift of the upper section of the growing unit. To overcome this and expand the field application, the SGM was equipped with auxiliary equipment called install-base, this is composed of three rings. Bundling several units was also considered. This can give SGM direction by differential fluid injection to each unit, and facilitates progress through the curved paths. Results & Discussion SGM allows only contact force on the surface, similar to amoeba movement. This can be described as the contact which occurs when a rolled surface unfolds. SGM can help in the maintenance process of highly hazardous or unreachable spots, such as nuclear power plants, pipelines, and so on. It is best suited for highly sensitive environments. SGM is also promising in combination with inspection and maintenance of constructions with field endoscopy; it can provide medical checkups or remedies innovatively. Moreover, it is expected that SGM, unlike previous methods, can more accurately carry out maintenance of gradually downsized applications

    A Pilot Study of Endoscopic Submucosal Dissection Using an Endoscopic Assistive Robot in a Porcine Stomach Model

    No full text
    Background/AimsEndoscopic assistive devices have been developed to reduce the complexity and improve the safety of surgeries involving the use of endoscopes. We developed an assistive robotic arm for endoscopic submucosal dissection (ESD) and evaluated its efficiency and safety in this in vitro pilot study.Methods : ESD was performed using an auxiliary transluminal endoscopic robot. An in vitro test bed replicating the intra-abdominal environment and pig stomachs were used for the experiment. Participants were divided into skilled operators and unskilled operators. Each group performed ESD 10 times by using both conventional and robot-assisted methods. The perforation incidence, operation time, and resected mucous membrane size were measured.Results : For the conventional method, significant differences were noted between skilled and unskilled operators regarding operation time (11.3 minutes vs 26.7 minutes) and perforation incidence (0/10 vs 6/10). Unskilled operators showed a large decrease in the perforation incidence with the robot-assisted method (conventional method vs robot-assisted method, 6/10 vs 1/10). However, the operation time did not differ between the conventional and robot-assisted methods. On the other hand, skilled operators did not show differences in the operation time and perforation incidence between the conventional and robot-assisted methods. Among both skilled and unskilled operators, the operation time decreased with the robot-assisted method as the experiment proceeded.Conclusion : sThe surgical safety of unskilled operators greatly improved with robotic assistance. Thus, our assistive robotic arm was beneficial for ESD. Our findings suggest that endoscopic assistive robots have positive effects on surgical safety
    corecore