3,719 research outputs found

    An international, multicentre evaluation and description of Burkholderia pseudomallei infection in cystic fibrosis

    Get PDF
    BACKGROUND: Several cases of Burkholderia pseudomallei infection in CF have been previously reported. We aimed to identify all cases globally, risk factors for acquisition, clinical consequences, and optimal treatment strategies. METHODS: We performed a literature search to identify all published cases of B. pseudomallei infection in CF. In addition we hand-searched respiratory journals, and contacted experts in infectious diseases and CF around the world. Supervising clinicians for identified cases were contacted and contemporaneous clinical data was requested. RESULTS: 25 culture-confirmed cases were identified. The median age at acquisition was 21 years, mean FEV(1) % predicted was 60 %, and mean BMI was 19.5 kg/m(2). The location of acquisition was northern Australia or south-east Asia for most. 19 patients (76 %) developed chronic infection, which was usually associated with clinical decline. Successful eradication strategies included a minimum of two weeks of intravenous ceftazidime, followed by a consolidation phase with trimethoprim/sulfamethoxazole, and this resulted in a higher chance of success when instituted early. Three cases of lung transplantation have been recorded in the setting of chronic B. pseudomallei infection. CONCLUSION: Chronic carriage of B. pseudomallei in patients with CF appears common after infection, in contrast to the non-CF population. This is often associated with an accelerated clinical decline. Lung transplantation has been performed in select cases of chronic B. pseudomallei infection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12890-015-0109-9) contains supplementary material, which is available to authorized users

    On A New Formulation of Micro-phenomena: Basic Principles, Stationary Fields And Beyond

    Full text link
    In a series of essays, beginning with this article, we are going to develop a new formulation of micro-phenomena based on the principles of reality and causality. The new theory provides with us a new depiction of micro-phenomena assuming an unified concept of information, matter and energy. So, we suppose that in a definite micro-physical context (including other interacting particles), each particle is enfolded by a probability field whose existence is contingent upon the existence of the particle, but it can locally affect the physical status of the particle in a context-dependent manner. The dynamics of the whole particle-field system obeys deterministic equations in a manner that when the particle is subjected to a conservative force, the field also experiences a conservative complex force which its form is determined by the dynamics of particle. So, the field is endowed with a given amount of energy, but its value is contingent upon the physical conditions the particle is subjected to. Based on the energy balance of the particle and its associated field, we argue why the field has a probabilistic objective nature. In such a way, the basic elements of this new formulation, its application for some stationary states and its nonlinear generalization for conservative systems are discussed here.Comment: 35 pages, 5 figures, 3 appendice

    Relationships between community composition, productivity and invasion resistance in semi-natural bacterial microcosms

    Get PDF
    Common garden experiments that inoculate a standardised growth medium with synthetic microbial communities (i.e. constructed from individual isolates or using dilution cultures) suggest that the ability of the community to resist invasions by additional microbial taxa can be predicted by the overall community productivity (broadly defined as cumulative cell density and/or growth rate). However, to the best of our knowledge, no common garden study has yet investigated the relationship between microbial community composition and invasion resistance in microcosms whose compositional differences reflect natural, rather than laboratory-designed, variation. We conducted experimental invasions of two bacterial strains (Pseudomonas fluorescens and Pseudomonas putida) into laboratory microcosms inoculated with 680 different mixtures of bacteria derived from naturally occurring microbial communities collected in the field. Using 16S rRNA gene amplicon sequencing to characterise microcosm starting composition, and high- throughput assays of community phenotypes including productivity and invader survival, we determined that productivity is a key predictor of invasion resistance in natural microbial communities, substantially mediating the effect of composition on invasion resistance. The results suggest that similar general principles govern invasion in artificial and natural communities, and that factors affecting resident community productivity should be a focal point for future microbial invasion experiments

    Adaptive Lévy processes and area-restricted search in human foraging

    Get PDF
    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions

    Signal-Locality and Subquantum Information in Deterministic Hidden-Variables Theories

    Get PDF
    It is proven that any deterministic hidden-variables theory, that reproduces quantum theory for a 'quantum equilibrium' distribution of hidden variables, must predict the existence of instantaneous signals at the statistical level for hypothetical 'nonequilibrium ensembles'. This 'signal-locality theorem' generalises yet another feature of the pilot-wave theory of de Broglie and Bohm, for which it is already known that signal-locality is true only in equilibrium. Assuming certain symmetries, lower bounds are derived on the 'degree of nonlocality' of the singlet state, defined as the (equilibrium) fraction of outcomes at one wing of an EPR-experiment that change in response to a shift in the distant angular setting. It is shown by explicit calculation that these bounds are satisfied by pilot-wave theory. The degree of nonlocality is interpreted as the average number of bits of 'subquantum information' transmitted superluminally, for an equilibrium ensemble. It is proposed that this quantity might provide a novel measure of the entanglement of a quantum state, and that the field of quantum information would benefit from a more explicit hidden-variables approach. It is argued that the signal-locality theorem supports the hypothesis, made elsewhere, that in the remote past the universe relaxed to a state of statistical equilibrium at the hidden-variable level, a state in which nonlocality happens to be masked by quantum noise

    Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demonstrate wide variation across populations and over time

    Get PDF
    Background: Information on SARS-CoV-2 in representative community surveillance is limited, particularly cycle threshold (Ct) values (a proxy for viral load). Methods: We included all positive nose and throat swabs 26 April 2020 to 13 March 2021 from the UK’s national COVID-19 Infection Survey, tested by RT-PCR for the N, S, and ORF1ab genes. We investigated predictors of median Ct value using quantile regression. Results: Of 3,312,159 nose and throat swabs, 27,902 (0.83%) were RT-PCR-positive, 10,317 (37%), 11,012 (40%), and 6550 (23%) for 3, 2, or 1 of the N, S, and ORF1ab genes, respectively, with median Ct = 29.2 (~215 copies/ml; IQR Ct = 21.9–32.8, 14–56,400 copies/ml). Independent predictors of lower Cts (i.e. higher viral load) included self-reported symptoms and more genes detected, with at most small effects of sex, ethnicity, and age. Single-gene positives almost invariably had Ct > 30, but Cts varied widely in triple-gene positives, including without symptoms. Population-level Cts changed over time, with declining Ct preceding increasing SARS-CoV-2 positivity. Of 6189 participants with IgG S-antibody tests post-first RT-PCR-positive, 4808 (78%) were ever antibody-positive; Cts were significantly higher in those remaining antibody negative. Conclusions: Marked variation in community SARS-CoV-2 Ct values suggests that they could be a useful epidemiological early-warning indicator. Funding: Department of Health and Social Care, National Institutes of Health Research, Huo Family Foundation, Medical Research Council UK; Wellcome Trust

    Author Correction : Bacterial adaptation is constrained in complex communities (Nature Communications, (2020), 11, 1, (754), 10.1038/s41467-020-14570-z)

    Get PDF
    The original version of this Article contained an error in Fig. 1, in which the labels were inadvertently omitted from the pie chart. This has been corrected in both the PDF and HTML versions of the Article

    SARS-CoV-2 anti-spike IgG antibody responses after second dose of ChAdOx1 or BNT162b2 and correlates of protection in the UK general population

    Get PDF
    Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2–3 months after two ChAdOx1 doses, for 5–8 months after two BNT162b2 doses in those without prior infection and for 1–2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Safety of anti-immunoglobulin E therapy with omalizumab in allergic patients at risk of geohelminth infection

    Get PDF
    BACKGROUND: Although the role of immunoglobulin E (IgE) in immunity against helminth parasites is unclear, there is concern that therapeutic antibodies that neutralize IgE (anti-IgE) may be unsafe in subjects at risk of helminth infection. OBJECTIVE: We conducted an exploratory study to investigate the safety of omalizumab (anti-IgE) in subjects with allergic asthma and/or perennial allergic rhinitis at high risk of intestinal helminth infection. The primary safety outcome was risk of infections with intestinal helminths during anti-IgE therapy. METHODS: A randomized, double-blind, placebo-controlled trial was conducted in 137 subjects (12–30 years) at high risk of geohelminth infection. All subjects received pre-study anthelmintic treatment, followed by 52 weeks' treatment with omalizumab or placebo. RESULTS: Of the omalizumab subjects 50% (34/68) experienced at least one intestinal geohelminth infection compared with 41% (28/69) of placebo subjects [odds ratio (OR) 1.47, 95% confidence interval (CI) 0.74–2.95, one-sided P = 0.14; OR (adjusted for study visit, baseline infection status, gender and age) 2.2 (0.94–5.15); one-sided P = 0.035], providing some evidence for a potential increased incidence of geohelminth infection in subjects receiving omalizumab. Omalizumab therapy was well tolerated, and did not appear to be associated with increased morbidity attributable to intestinal helminths as assessed by clinical and laboratory adverse events, maximal helminth infection intensities and additional anthelmintic requirements. Time to first infection (OR 1.30, 95% CI 0.79–2.15, one-sided P = 0.15) was similar between treatment groups. Infection severity and response to anthelmintics appeared to be unaffected by omalizumab therapy. CONCLUSIONS: In this exploratory study of allergic subjects at high risk of helminth infections, omalizumab therapy appeared to be safe and well tolerated, but may be associated with a modest increase in the incidence of geohelminth infection
    corecore