9 research outputs found

    Effects of Aspirin on Endothelial Function and Hypertension

    Get PDF
    PURPOSE OF REVIEW: Endothelial dysfunction is intimately related to the development of various cardiovascular diseases, including hypertension, and is often used as a target for pharmacological treatment. The scope of this review is to assess effects of aspirin on endothelial function and their clinical implication in arterial hypertension. RECENT FINDINGS: Emerging data indicate the role of platelets in the development of vascular inflammation due to the release of proinflammatory mediators, for example, triggered largely by thromboxane. Vascular inflammation further promotes oxidative stress, diminished synthesis of vasodilators, proaggregatory and procoagulant state. These changes translate into vasoconstriction, impaired circulation and thrombotic complications. Aspirin inhibits thromboxane synthesis, abolishes platelets activation and acetylates enzymes switching them to the synthesis of anti-inflammatory substances. SUMMARY: Aspirin pleiotropic effects have not been fully elucidated yet. In secondary prevention studies, the decrease in cardiovascular events with aspirin outweighs bleeding risks, but this is not the case in primary prevention settings. Ongoing trials will provide more evidence on whether to expand the use of aspirin or stay within current recommendations

    Contribution of K+ channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro

    No full text
    We investigated the mechanisms behind the endothelial-derived hyperpolarization (EDH)-induced renal vasodilation in vivo and in vitro in rats. We assessed the role of Ca2+-activated K+ channels and whether K+ released from the endothelial cells activates inward rectifier K+ (Kir) channels and/or the Na+/K+-ATPase. Also, involvement of renal myoendothelial gap junctions was evaluated in vitro. Isometric tension in rat renal interlobar arteries was measured using a wire myograph. Renal blood flow was measured in isoflurane anesthetized rats. The EDH response was defined as the ACh-induced vasodilation assessed after inhibition of nitric oxide synthase and cyclooxygenase using L-NAME and indomethacin, respectively. After inhibition of small conductance Ca2+-activated K+ channels (SKCa) and intermediate conductance Ca2+-activated K+ channels (IKCa) (by apamin and TRAM-34, respectively), the EDH response in vitro was strongly attenuated whereas the EDH response in vivo was not significantly reduced. Inhibition of Kir channels and Na+/K+-ATPases (by ouabain and Ba2+, respectively) significantly attenuated renal vasorelaxation in vitro but did not affect the response in vivo. Inhibition of gap junctions in vitro using carbenoxolone or 18α-glycyrrhetinic acid significantly reduced the endothelial-derived hyperpolarization-induced vasorelaxation. We conclude that SKCa and IKCa channels are important for EDH-induced renal vasorelaxation in vitro. Activation of Kir channels and Na+/K+-ATPases plays a significant role in the renal vascular EDH response in vitro but not in vivo. The renal EDH response in vivo is complex and may consist of several overlapping mechanisms some of which remain obscure

    Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice

    Get PDF
    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05). Similarly, inhibition of ω-hydroxylases increased repayment volume and repayment duration, in Tie2-CYP2J2 Tr compared to WT mice (P < 0.05). Endothelial overexpression of CYP2J2 significantly changed oxylipin profiles, including increased EETs (P < 0.05), increased EpOMEs (P < 0.05), and decreased 8-iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH

    Vascular Endothelial Over-Expression of Human Soluble Epoxide Hydrolase (Tie2-sEH Tr) Attenuates Coronary Reactive Hyperemia in Mice: Role of Oxylipins and ω-Hydroxylases

    Get PDF
    Cytochromes P450 metabolize arachidonic acid (AA) into two vasoactive oxylipins with opposing biologic effects: epoxyeicosatrienoic acids (EETs) and omega-(ω)-terminal hydroxyeicosatetraenoic acids (HETEs). EETs have numerous beneficial physiological effects, including vasodilation and protection against ischemia/reperfusion injury, whereas ω-terminal HETEs induce vasoconstriction and vascular dysfunction. We evaluated the effect of these oxylipins on post-ischemic vasodilation known as coronary reactive hyperemia (CRH). CRH prevents the potential harm associated with transient ischemia. The beneficial effects of EETs are reduced after their hydrolysis to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). ω-terminal HETEs are formed by ω-hydroxylase family members. The relationship among endothelial over-expression of sEH (Tie2-sEH Tr), the changes in oxylipins it may produce, the pharmacologic inhibition of ω-hydroxylases, activation of PPARγ, and CRH response to a brief ischemia is not known. We hypothesized that CRH is attenuated in isolated mouse hearts with endothelial sEH over-expression through modulation of oxylipin profiles, whereas both inhibition of ω-hydroxylases and activation of PPARγ enhance CRH. Compared to WT mice, Tie2-sEH Tr mice had decreased CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05), whereas inhibition of ω-hydroxylases increased these same CRH parameters in Tie2-sEH Tr mice. Inhibition of sEH with t-AUCB reversed the decreased CRH in Tie2-sEH Tr mice. Endothelial over-expression of sEH significantly changed oxylipin profiles, including decreases in DHETs, mid-chain HETEs, and prostaglandins (P < 0.05). Treatment with rosiglitazone, PPARγ-agonist, enhanced CRH (P < 0.05) in both Tie2-sEH Tr and wild type (WT) mice. These data demonstrate that endothelial over-expression of sEH (through changing the oxylipin profiles) attenuates CRH, whereas inhibition of ω-hydroxylases and activation of PPARγ enhance it
    corecore