7 research outputs found

    RĂ©activitĂ© de l'azote atomique et du radical OH Ă  basse tempĂ©rature par la technique CRESU (rĂ©actions d'intĂ©rĂȘt pour l'astrochimie)

    Get PDF
    Plus d'une centaine de rĂ©actions entre des molĂ©cules stables et des radicaux se sont rĂ©vĂ©lĂ©es ĂȘtre rapides Ă  trĂšs basse tempĂ©rature. Les rĂ©actions entre deux espĂšces radicalaires ont quant Ă  elles reçu beaucoup moins d'attention de la part des scientifiques. Les complexitĂ©s de production et de mesure de concentrations de ces radicaux en sont les principales raisons. Nous avons rĂ©alisĂ© pour la premiĂšre fois des mesures de constantes de vitesse sur les rĂ©actions radical-radical N + OH, N + CN et N + CH Ă  basse tempĂ©rature dans un rĂ©acteur Ă  Ă©coulement supersonique uniforme (tuyĂšre de Laval). Nous avons utilisĂ© une technique de dĂ©charge micro-onde pour produire l'azote atomique et une mĂ©thode de mesure relative pour dĂ©terminer les cinĂ©tiques des rĂ©actions. Les rĂ©sultats donnent un aperçu des mĂ©canismes de formation en phase gazeuse de l'azote molĂ©culaire dans les nuages denses du milieu interstellaire.More than a hundred reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N + OH, N + CN and N + CH reactions in a supersonic flow (Laval nozzle) reactor. We used a microwave-discharge method to generate atomic nitrogen and a relative-rate method to follow the reaction kinetics. The measured rates agreed well with the results of exact and approximate quantum mechanical calculations. These results also provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Atomic nitrogen and OH radical reactivity at low temperature by the CRESU technique : reactions of interest to astrochemistry

    No full text
    Plus d'une centaine de rĂ©actions entre des molĂ©cules stables et des radicaux se sont rĂ©vĂ©lĂ©es ĂȘtre rapides Ă  trĂšs basse tempĂ©rature. Les rĂ©actions entre deux espĂšces radicalaires ont quant Ă  elles reçu beaucoup moins d'attention de la part des scientifiques. Les complexitĂ©s de production et de mesure de concentrations de ces radicaux en sont les principales raisons. Nous avons rĂ©alisĂ© pour la premiĂšre fois des mesures de constantes de vitesse sur les rĂ©actions radical-radical N + OH, N + CN et N + CH Ă  basse tempĂ©rature dans un rĂ©acteur Ă  Ă©coulement supersonique uniforme (tuyĂšre de Laval). Nous avons utilisĂ© une technique de dĂ©charge micro-onde pour produire l'azote atomique et une mĂ©thode de mesure relative pour dĂ©terminer les cinĂ©tiques des rĂ©actions. Les rĂ©sultats donnent un aperçu des mĂ©canismes de formation en phase gazeuse de l'azote molĂ©culaire dans les nuages denses du milieu interstellaire.More than a hundred reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N + OH, N + CN and N + CH reactions in a supersonic flow (Laval nozzle) reactor. We used a microwave-discharge method to generate atomic nitrogen and a relative-rate method to follow the reaction kinetics. The measured rates agreed well with the results of exact and approximate quantum mechanical calculations. These results also provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds

    Atomic nitrogen and OH radical reactivity at low temperature by the CRESU technique : reactions of interest to astrochemistry

    No full text
    Plus d'une centaine de rĂ©actions entre des molĂ©cules stables et des radicaux se sont rĂ©vĂ©lĂ©es ĂȘtre rapides Ă  trĂšs basse tempĂ©rature. Les rĂ©actions entre deux espĂšces radicalaires ont quant Ă  elles reçu beaucoup moins d'attention de la part des scientifiques. Les complexitĂ©s de production et de mesure de concentrations de ces radicaux en sont les principales raisons. Nous avons rĂ©alisĂ© pour la premiĂšre fois des mesures de constantes de vitesse sur les rĂ©actions radical-radical N + OH, N + CN et N + CH Ă  basse tempĂ©rature dans un rĂ©acteur Ă  Ă©coulement supersonique uniforme (tuyĂšre de Laval). Nous avons utilisĂ© une technique de dĂ©charge micro-onde pour produire l'azote atomique et une mĂ©thode de mesure relative pour dĂ©terminer les cinĂ©tiques des rĂ©actions. Les rĂ©sultats donnent un aperçu des mĂ©canismes de formation en phase gazeuse de l'azote molĂ©culaire dans les nuages denses du milieu interstellaire.More than a hundred reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N + OH, N + CN and N + CH reactions in a supersonic flow (Laval nozzle) reactor. We used a microwave-discharge method to generate atomic nitrogen and a relative-rate method to follow the reaction kinetics. The measured rates agreed well with the results of exact and approximate quantum mechanical calculations. These results also provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds

    Low temperature rate constants for the N(4S) + CH(X2{\Pi}r) reaction. Implications for N2 formation cycles in dense interstellar clouds

    No full text
    Rate constants for the potentially important interstellar N(4S) + CH(X2{\Pi}r) reaction have been measured in a continuous supersonic flow reactor over the range 56 K < T < 296 K using the relative rate technique employing both the N(4S) + OH(X2{\Pi}i) and N(4S) + CN(X2{\Sigma}+) reactions as references. Excess concentrations of atomic nitrogen were produced by the microwave discharge method upstream of the Laval nozzle and CH and OH radicals were created by the in-situ pulsed laser photolysis of suitable precursor molecules. In parallel, quantum dynamics calculations of the title reaction have been performed based on accurate global potential energy surfaces for the 13A' and 13A" states of HCN and HNC, brought about through a hierarchical construction scheme. Both adiabatic potential energy surfaces are barrierless, each one having two deep potential wells suggesting that this reaction is dominated by a complex-forming mechanism. The experimental and theoretical work are inexcellent agreement, predicting a positive temperature dependence of the rate constant, in contrast to earlier experimental work at low temperature. The effects of the new low temperature rate constants on interstellar N2 formation are tested using a dense cloud model, yielding N2 abundances 10-20 % lower than previously predicted

    Revealing Atom-Radical Reactivity at Low Temperature Through the N + OH Reaction

    No full text
    International audienceMore than 100 reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N(4S) + OH(2Π) → H(2S) + NO(2Π) reaction in a supersonic flow (Laval nozzle) reactor. We used a microwave-discharge method to generate atomic nitrogen and a relative-rate method to follow the reaction kinetics. The measured rates agreed well with the results of exact and approximate quantum mechanical calculations. These results also provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds

    Gas-Phase Kinetics of the Hydroxyl Radical Reaction with Allene: Absolute Rate Measurements at Low Temperature, Product Determinations, and Calculations

    No full text
    The gas phase reaction of the hydroxyl radical with allene has been studied theoretically and experimentally in a continuous supersonic flow reactor over the range 50 ≀ <i>T</i>/K ≀ 224. This reaction has been found to exhibit a negative temperature dependence over the entire temperature range investigated, varying between (0.75 and 5.0) × 10<sup>–11</sup> cm<sup>3</sup> molecule<sup>–1</sup> s<sup>–1</sup>. Product formation from the reaction of OH and OD radicals with allene (C<sub>3</sub>H<sub>4</sub>) has been investigated in a fast flow reactor through time-of-flight mass spectrometry, at pressures between 0.8 and 2.4 Torr. The branching ratios for adduct formation (C<sub>3</sub>H<sub>4</sub>OH) in this pressure range are found to be equal to 34 ± 16% and 48 ± 16% for the OH and OD + allene reactions, respectively, the only other channel being the formation of CH<sub>3</sub> or CH<sub>2</sub>D + H<sub>2</sub>CCO (ketene). Moreover, the rate constant for the OD + C<sub>3</sub>H<sub>4</sub> reaction is also found to be 1.4 times faster than the rate constant for the OH + C<sub>3</sub>H<sub>4</sub> reaction at 1.5 Torr and at 298 K. The experimental results and implications for atmospheric chemistry have been rationalized by quantum chemical and RRKM calculations
    corecore