148 research outputs found
Targeting the Wnt pathways for therapies
The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells - cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies
Calculated phonon spectra of paramagnetic iron at the alpha-gamma phase transition
We compute lattice dynamical properties of iron at the bcc-fcc phase
transition using dynamical mean-field theory implemented with the frozen-phonon
method. Electronic correlations are found to have a strong effect on the
lattice stability of paramagnetic iron in the bcc phase. Our results for the
structural phase stability and lattice dynamical properties of iron are in good
agreement with experiment.Comment: 4 pages, 2 figure
First-principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: Dynamical Mean-field Theory
A recently developed dynamical mean-field theory in the iterated perturbation
theory approximation was used as a basis for construction of the "first
principles" calculation scheme for investigating electronic structure of
strongly correlated electron systems. This scheme is based on Local Density
Approximation (LDA) in the framework of the Linearized Muffin-Tin-Orbitals
(LMTO) method. The classical example of the doped Mott-insulator
La_{1-x}Sr_xTiO_3 was studied by the new method and the results showed
qualitative improvement in agreement with experimental photoemission spectra.Comment: 11 pages, 3 Postscript figures, LaTeX, submit in Journal of Physics:
Condensed Matte
Cluster Dynamical Mean-field calculations for TiOCl
Based on a combination of cluster dynamical mean field theory (DMFT) and
density functional calculations, we calculated the angle-integrated spectral
density in the layered quantum magnet TiOCl. The agreement with recent
photoemission and oxygen K-edge X-ray absorption spectroscopy experiments is
found to be good. Th e improvement achieved with this calculation with respect
to previous single-site DMFT calculations is an indication of the correlated
nature and low-dimensionality of TiOCl.Comment: 9 pages, 3 figures, improved version as publishe
Recommended from our members
Non-stoichiometric oxide and metal interfaces and reactions
We have employed a combination of experimental surface science techniques and density functional calculations to study the reduction of TiO2(110) surfaces through the doping with submonolayer transition metals. We concentrate on the role of Ti adatoms in self doping of rutile and contrast the behaviour to that of Cr. DFT+U calculations enable identification of probable adsorption structures and their spectroscopic characteristics. Adsorption of both metals leads to a broken symmetry and an asymmetric charge transfer localised around the defect site of a mixed localised/delocalised character. Charge transfer creates defect states with Ti 3d character in the band gap at similar to 1-eV binding energy. Cr adsorption, however, leads to a very large shift in the valence-band edge to higher binding energy and the creation of Cr 3d states at 2.8-eV binding energy. Low-temperature oxidation lifts the Ti-derived band-gap states and modifies the intensity of the Cr features, indicative of a change of oxidation state from Cr3+ to Cr4+. Higher temperature processing leads to a loss of Cr from the surface region, indicative of its substitution into the bulk
Laser-induced charge-disproportionated metallic state in LaCoO3
Understanding the origin of the spin transition in LaCoO3 is one of the long-
standing aims in condensed matter physics. Aside from its fundamental
interest, a detailed description of this crossover will have a direct impact
on the interpretation of the semiconductor-to-metal transition (SMT) and the
properties of the high-temperature metallic phase in this compound, which has
shown to have important applications in environmentally friendly energy
production. To date, the spin transition has been investigated mainly as a
function of temperature in thermal equilibrium. These results have hinted at
dynamical effects. In this paper, we have investigated the SMT by means of
pump-probe soft x-ray reflectivity experiments at the O K, Co L, and La M
edges and theoretical calculations within a DFT++ formalism. The results point
towards a laser-induced metallization in which the optical transitions
stabilize a metallic state with high-spin configuration and increased charge
disproportionation
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
Electronic correlations at the alpha-gamma structural phase transition in paramagnetic iron
We compute the equilibrium crystal structure and phase stability of iron at
the alpha(bcc)-gamma(fcc) phase transition as a function of temperature, by
employing a combination of ab initio methods for calculating electronic band
structures and dynamical mean-field theory. The magnetic correlation energy is
found to be an essential driving force behind the alpha-gamma structural phase
transition in paramagnetic iron.Comment: 4 pages, 3 figure
Protecting the past for the public good: archaeology and Australian heritage law
Archaeological remains have long been recognised as fragile evidence of the past, which require protection. Legal protection for archaeological heritage has existed in Australia for more than thirty years but there has been little analysis of the aims and effectiveness of that legislation by the archaeological profession. Much Australian heritage legislation was developed in a period where the dominant paradigm in archaeological theory and practice held that archaeology was an objective science. Australian legislative frameworks continue to strongly reflect this scientific paradigm and contemporary archaeological heritage management practice is in turn driven by these legislative requirements. This thesis examines whether archaeological heritage legislation is fulfilling its original intent. Analysis of legislative development in this thesis reveals that legislators viewed archaeological heritage as having a wide societal value, not solely or principally for the archaeological community. Archaeological heritage protection is considered within the broader philosophy of environmental conservation. As an environmental issue, it is suggested that a ‘public good’ conservation paradigm is closer to the original intent of archaeological heritage legislation, rather than the “scientific” paradigm which underlies much Australian legislation. Through investigation of the developmental history of Australian heritage legislation it is possible to observe how current practice has diverged from the original intent of the legislation, with New South Wales and Victoria serving as case studies. Further analysis is undertaken of the limited number of Australian court cases which have involved substantial archaeological issues to determine the court’s attitude to archaeological heritage protection. Situating archaeological heritage protective legislation within the field of environmental law allows the examination of alternate modes of protecting archaeological heritage and creates opportunities for ‘public good’ conservation outcomes. This shift of focus to ‘public good’ conservation as an alternative to narrowly-conceived scientific outcomes better aligns with current public policy directions including the sustainability principles, as they have developed in Australia, as well as indigenous rights of self-determination. The thesis suggests areas for legal reforms which direct future archaeological heritage management practice to consider the ‘public good’ values for archaeological heritage protection
Prognostic significance of the expression of GFRα1, GFRα3 and Syndecan-3, Proteins binding ARTEMIN, In mammary carcinoma
10.1186/1471-2407-13-34BMC Cancer13-BCMA
- …
