148 research outputs found

    Targeting the Wnt pathways for therapies

    Get PDF
    The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells - cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies

    Calculated phonon spectra of paramagnetic iron at the alpha-gamma phase transition

    Full text link
    We compute lattice dynamical properties of iron at the bcc-fcc phase transition using dynamical mean-field theory implemented with the frozen-phonon method. Electronic correlations are found to have a strong effect on the lattice stability of paramagnetic iron in the bcc phase. Our results for the structural phase stability and lattice dynamical properties of iron are in good agreement with experiment.Comment: 4 pages, 2 figure

    First-principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: Dynamical Mean-field Theory

    Full text link
    A recently developed dynamical mean-field theory in the iterated perturbation theory approximation was used as a basis for construction of the "first principles" calculation scheme for investigating electronic structure of strongly correlated electron systems. This scheme is based on Local Density Approximation (LDA) in the framework of the Linearized Muffin-Tin-Orbitals (LMTO) method. The classical example of the doped Mott-insulator La_{1-x}Sr_xTiO_3 was studied by the new method and the results showed qualitative improvement in agreement with experimental photoemission spectra.Comment: 11 pages, 3 Postscript figures, LaTeX, submit in Journal of Physics: Condensed Matte

    Cluster Dynamical Mean-field calculations for TiOCl

    Full text link
    Based on a combination of cluster dynamical mean field theory (DMFT) and density functional calculations, we calculated the angle-integrated spectral density in the layered s=1/2s=1/2 quantum magnet TiOCl. The agreement with recent photoemission and oxygen K-edge X-ray absorption spectroscopy experiments is found to be good. Th e improvement achieved with this calculation with respect to previous single-site DMFT calculations is an indication of the correlated nature and low-dimensionality of TiOCl.Comment: 9 pages, 3 figures, improved version as publishe

    Laser-induced charge-disproportionated metallic state in LaCoO3

    Get PDF
    Understanding the origin of the spin transition in LaCoO3 is one of the long- standing aims in condensed matter physics. Aside from its fundamental interest, a detailed description of this crossover will have a direct impact on the interpretation of the semiconductor-to-metal transition (SMT) and the properties of the high-temperature metallic phase in this compound, which has shown to have important applications in environmentally friendly energy production. To date, the spin transition has been investigated mainly as a function of temperature in thermal equilibrium. These results have hinted at dynamical effects. In this paper, we have investigated the SMT by means of pump-probe soft x-ray reflectivity experiments at the O K, Co L, and La M edges and theoretical calculations within a DFT++ formalism. The results point towards a laser-induced metallization in which the optical transitions stabilize a metallic state with high-spin configuration and increased charge disproportionation

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Electronic correlations at the alpha-gamma structural phase transition in paramagnetic iron

    Full text link
    We compute the equilibrium crystal structure and phase stability of iron at the alpha(bcc)-gamma(fcc) phase transition as a function of temperature, by employing a combination of ab initio methods for calculating electronic band structures and dynamical mean-field theory. The magnetic correlation energy is found to be an essential driving force behind the alpha-gamma structural phase transition in paramagnetic iron.Comment: 4 pages, 3 figure

    Protecting the past for the public good: archaeology and Australian heritage law

    Get PDF
    Archaeological remains have long been recognised as fragile evidence of the past, which require protection. Legal protection for archaeological heritage has existed in Australia for more than thirty years but there has been little analysis of the aims and effectiveness of that legislation by the archaeological profession. Much Australian heritage legislation was developed in a period where the dominant paradigm in archaeological theory and practice held that archaeology was an objective science. Australian legislative frameworks continue to strongly reflect this scientific paradigm and contemporary archaeological heritage management practice is in turn driven by these legislative requirements. This thesis examines whether archaeological heritage legislation is fulfilling its original intent. Analysis of legislative development in this thesis reveals that legislators viewed archaeological heritage as having a wide societal value, not solely or principally for the archaeological community. Archaeological heritage protection is considered within the broader philosophy of environmental conservation. As an environmental issue, it is suggested that a ‘public good’ conservation paradigm is closer to the original intent of archaeological heritage legislation, rather than the “scientific” paradigm which underlies much Australian legislation. Through investigation of the developmental history of Australian heritage legislation it is possible to observe how current practice has diverged from the original intent of the legislation, with New South Wales and Victoria serving as case studies. Further analysis is undertaken of the limited number of Australian court cases which have involved substantial archaeological issues to determine the court’s attitude to archaeological heritage protection. Situating archaeological heritage protective legislation within the field of environmental law allows the examination of alternate modes of protecting archaeological heritage and creates opportunities for ‘public good’ conservation outcomes. This shift of focus to ‘public good’ conservation as an alternative to narrowly-conceived scientific outcomes better aligns with current public policy directions including the sustainability principles, as they have developed in Australia, as well as indigenous rights of self-determination. The thesis suggests areas for legal reforms which direct future archaeological heritage management practice to consider the ‘public good’ values for archaeological heritage protection
    corecore