3,131 research outputs found

    Efficient Monte Carlo Simulation of Biological Aging

    Full text link
    A bit-string model of biological life-histories is parallelized, with hundreds of millions of individuals. It gives the desired drastic decay of survival probabilities with increasing age for 32 age intervals.Comment: PostScript file to appear in Int.J.Mod.Phys.

    Monte Carlo Simulations of Sexual Reproduction

    Full text link
    Modifying the Redfield model of sexual reproduction and the Penna model of biological aging, we compare reproduction with and without recombination in age-structured populations. In contrast to Redfield and in agreement with Bernardes we find sexual reproduction to be preferred to asexual one. In particular, the presence of old but still reproducing males helps the survival of younger females beyond their reproductive age.Comment: 8 pages, plain tex, 7 EPS figures, to appear in PHYSICA

    Mott Insulator to Superfluid transition in Bose-Bose mixtures in a two-dimensional lattice

    Full text link
    We perform a numeric study (Worm algorithm Monte Carlo simulations) of ultracold two-component bosons in two-dimensional optical lattices. We study how the Mott insulator to superfluid transition is affected by the presence of a second superfluid bosonic species. We find that, at fixed interspecies interaction, the upper and lower boundaries of the Mott lobe are differently modified. The lower boundary is strongly renormalized even for relatively low filling factor of the second component and moderate (interspecies) interaction. The upper boundary, instead, is affected only for large enough filling of the second component. Whereas boundaries are renormalized we find evidence of polaron-like excitations. Our results are of interest for current experimental setups.Comment: 4 pages, 3 figures, accepted as PRA Rapid Communicatio

    Topology-induced confined superfluidity in inhomogeneous arrays

    Full text link
    We report the first study of the zero-temperature phase diagram of the Bose-Hubbard model on topologically inhomogeneous arrays. We show that the usual Mott-insulator and superfluid domains, in the paradigmatic case of the comb lattice, are separated by regions where the superfluid behaviour of the bosonic system is confined along the comb backbone. The existence of such {\it confined superfluidity}, arising from topological inhomogeneity, is proved by different analytical and numerical techniques which we extend to the case of inhomogeneous arrays. We also discuss the relevance of our results to real system exhibiting macroscopic phase coherence, such as coupled Bose condensates and Josephson arrays.Comment: 6 pages, 4 figures, final versio

    Analytical solution of a generalized Penna model

    Full text link
    In 1995 T.J.Penna introduced a simple model of biological aging. A modified Penna model has been demonstrated to exhibit behaviour of real-life systems including catastrophic senescence in salmon and a mortality plateau at advanced ages. We present a general steady-state, analytic solution to the Penna model, able to deal with arbitrary birth and survivability functions. This solution is employed to solve standard variant Penna models studied by simulation. Different Verhulst factors regulating both the birth rate and external death rate are considered.Comment: 6 figure

    Attractive ultracold bosons in a necklace optical potential

    Full text link
    We study the ground state properties of the Bose-Hubbard model with attractive interactions on a M-site one-dimensional periodic -- necklace-like -- lattice, whose experimental realization in terms of ultracold atoms is promised by a recently proposed optical trapping scheme, as well as by the control over the atomic interactions and tunneling amplitudes granted by well-established optical techniques. We compare the properties of the quantum model to a semiclassical picture based on a number-conserving su(M) coherent state, which results into a set of modified discrete nonlinear Schroedinger equations. We show that, owing to the presence of a correction factor ensuing from number conservation, the ground-state solution to these equations provides a remarkably satisfactory description of its quantum counterpart not only -- as expected -- in the weak-interaction, superfluid regime, but even in the deeply quantum regime of large interactions and possibly small populations. In particular, we show that in this regime, the delocalized, Schroedinger-cat-like quantum ground state can be seen as a coherent quantum superposition of the localized, symmetry-breaking ground-state of the variational approach. We also show that, depending on the hopping to interaction ratio, three regimes can be recognized both in the semiclassical and quantum picture of the system.Comment: 11 pages, 7 figures; typos corrected and references added; to appear in Phys. Rev.

    Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity

    Full text link
    Among the various possibilities to probe the theory behind the recent accelerated expansion of the universe, the energy conditions (ECs) are of particular interest, since it is possible to confront and constrain the many models, including different theories of gravity, with observational data. In this context, we use the ECs to probe any alternative theory whose extra term acts as a cosmological constant. For this purpose, we apply a model-independent approach to reconstruct the recent expansion of the universe. Using Type Ia supernova, baryon acoustic oscillations and cosmic-chronometer data, we perform a Markov Chain Monte Carlo analysis to put constraints on the effective cosmological constant Ωeff0\Omega^0_{\rm eff}. By imposing that the cosmological constant is the only component that possibly violates the ECs, we derive lower and upper bounds for its value. For instance, we obtain that 0.59<Ωeff0<0.910.59 < \Omega^0_{\rm eff} < 0.91 and 0.40<Ωeff0<0.930.40 < \Omega^0_{\rm eff} < 0.93 within, respectively, 1σ1\sigma and 3σ3\sigma confidence levels. In addition, about 30\% of the posterior distribution is incompatible with a cosmological constant, showing that this method can potentially rule it out as a mechanism for the accelerated expansion. We also study the consequence of these constraints for two particular formulations of the bimetric massive gravity. Namely, we consider the Visser's theory and the Hassan and Roses's massive gravity by choosing a background metric such that both theories mimic General Relativity with a cosmological constant. Using the Ωeff0\Omega^0_{\rm eff} observational bounds along with the upper bounds on the graviton mass we obtain constraints on the parameter spaces of both theories.Comment: 11 pages, 4 figures, 1 tabl
    corecore