3,442 research outputs found

    WIYN Imaging of the Globular Cluster Systems of the Spiral Galaxies NGC891 and NGC4013

    Full text link
    We present results from a WIYN 3.5m telescope imaging study of the globular cluster (GC) systems of the edge-on spiral galaxies NGC891 and NGC4013. We used the 10' x 10' Minimosaic Imager to observe the galaxies in BVR filters to projected radii of ~20 kpc from the galaxy centers. We combined the WIYN data with archival and published data from WFPC2 and ACS on the Hubble Space Telescope to assess the contamination level of the WIYN GC candidate sample and to follow the GC systems further in toward the galaxies' centers. We constructed radial distributions for the GC systems using both the WIYN and HST data. The GC systems of NGC891 and NGC4013 extend to 9+/-3 kpc and 14+/-5 kpc, respectively, before falling off to undetectable levels in our images. We use the radial distributions to calculate global values for the total number (N_GC) and specific frequencies (S_N and T) of GCs. NGC4013 has N_GC = 140+/-20, S_N = 1.0+/-0.2 and T = 1.9+/-0.5; our N_GC value is ~40% smaller than a previous determination from the literature. The HST data were especially useful for NGC891, because the GC system is concentrated toward the plane of the galaxy and was only weakly detected in our WIYN images. Although NGC891 is thought to resemble the Milky Way in its overall properties, it has only half as many GCs, with N_GC = 70+/-20, S_N = 0.3+/-0.1 and T = 0.6+/-0.3. We also calculate the galaxy-mass-normalized number of blue (metal-poor) GCs in NGC891 and NGC4013 and find that they fall along a general trend of increasing specific frequency of blue GCs with increasing galaxy mass. Given currently available resources, the optimal method for studying the global properties of extragalactic GC systems is to combine HST data with wide-field, ground-based imaging with good resolution. The results here demonstrate the advantage gained by using both methods when possible.Comment: 43 pages, 11 figures 6 tables; accepted to The Astronomical Journal. Online AJ version at http://iopscience.iop.org/1538-3881/140/2/430

    Are HI Supershells the Remnants of Gamma-Ray Bursts?

    Full text link
    Gamma-Ray Bursts (GRBs) are thought to originate at cosmological distances from the most powerful explosions in the Universe. If GRBs are not beamed then the distribution of their number as a function of Gamma-ray flux implies that they occur once per (0.3-40) million years per bright galaxy and that they deposit >10^{53} ergs into their surrounding interstellar medium. The blast wave generated by a GRB explosion would be washed out by interstellar turbulence only after tens of millions of years when it finally slows down to a velocity of 10 km/s. This rather long lifetime implies that there could be up to several tens of active GRB remnants in each galaxy at any given time. For many years, radio observations have revealed the enigmatic presence of expanding neutral-hydrogen (HI) supershells of kpc radius in the Milky Way and in other nearby galaxies. The properties of some supershells cannot be easily explained in terms of conventional sources such as stellar winds or supernova explosions. However, the inferred energy and frequency of the explosions required to produce most of the observed supershells agree with the above GRB parameters. More careful observations and analysis might reveal which fraction of these supershells are GRB remnants. We show that if this link is established, the data on HI supershells can be used to constrain the energy output, the rate per galaxy, the beaming factor, and the environment of GRB sources in the Universe.Comment: 8 pages, final version, ApJ Letters, in pres

    The Effect of Substructure on Mass Estimates of Galaxies

    Full text link
    Large galaxies are thought to form hierarchically, from the accretion and disruption of many smaller galaxies. Such a scenario should naturally lead to galactic phase-space distributions containing some degree of substructure. We examine the errors in mass estimates of galaxies and their dark halos made using the projected phase-space distribution of a tracer population (such as a globular cluster system or planetary nebulae) due to falsely assuming that the tracers are distributed randomly. The level of this uncertainty is assessed by applying a standard mass estimator to samples drawn from 11 random realizations of galaxy halos containing levels of substructure consistent with current models of structure formation. We find that substructure will distort our mass estimates by up to ~20% - a negligible error compared to statistical and measurement errors in current derivations of masses for our own and other galaxies. However, this represents a fundamental limit to the accuracy of any future mass estimates made under the assumption that the tracer population is distributed randomly, regardless of the size of the sample or the accuracy of the measurements.Comment: 9 pages, 8 figures, Astrophysical Journal, in pres

    The Active Traveling Wave in the Cochlea

    Get PDF
    A sound stimulus entering the inner ear excites a deformation of the basilar membrane which travels along the cochlea towards the apex. It is well established that this wave-like disturbance is amplified by an active system. Recently, it has been proposed that the active system consists of a set of self-tuned critical oscillators which automatically operate at an oscillatory instability. Here, we show how the concepts of a traveling wave and of self-tuned critical oscillators can be combined to describe the nonlinear wave in the cochlea.Comment: 5 pages, 2 figure

    Mirror Position Determination for the Alignment of Cherenkov Telescopes

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and implementation demonstratio

    FACT - Long-term Monitoring of Bright TeV-Blazars

    Get PDF
    Since October 2011, the First G-APD Cherenkov Telescope (FACT) is operated successfully on the Canary Island of La Palma. Apart from the proof of principle for the use of G-APDs in Cherenkov telescopes, the major goal of the project is the dedicated long-term monitoring of a small sample of bright TeV blazars. The unique properties of G-APDs permit stable observations also during strong moon light. Thus a superior sampling density is provided on time scales at which the blazar variability amplitudes are expected to be largest, as exemplified by the spectacular variations of Mrk 501 observed in June 2012. While still in commissioning, FACT monitored bright blazars like Mrk 421 and Mrk 501 during the past 1.5 years so far. Preliminary results including the Mrk 501 flare from June 2012 will be presented.Comment: 4 pages, 4 figures, presented at the 33rd ICRC (2013
    corecore