727 research outputs found
Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes
We observed O2 deficits of 0.5 to 2.0% (1 to 4 mol/kg) in the underway seawater lines of three different ships. Deficits in O2/Ar and isotopic enrichments in dissolved O2 observed in underway seawater lines indicate a respiratory removal process. A 1% respiratory bias in underway lines would lead to a 2.5-5 atm (2.5-5pbar) enhancement in surface water pCO2. If an underway pCO2 bias of this magnitude affectedall measurements, the global oceanic carbon uptake based on pCO 2 climatologies would be 0.5-0.8 Pg/yr higher than the present estimate of 1.6 Pg/yr. Treatment of underway lines with bleach for several hours and thorough flushing appeared to minimize O2 loss. Given the increasing interest in underway seawater measurements for the determination of surface CO2 and O2 fluxes, respiration in underway seawater lines must be identified and eliminated on all observing ships to ensure unbiased data
Recommended from our members
Vulnerability of the frontal-temporal connections in temporal lobe epilepsy.
ObjectiveIn temporal lobe epilepsy (TLE), frontal-temporal connections are integral parts of the epileptogenic network. Although frontal-temporal gray matter abnormalities have been consistently demonstrated in TLE, white matter connections between these two lobes require further study in this disease setting. We therefore investigated the integrity of two major frontal-temporal white matter association tracts, uncinate fasciculus (UF) and arcuate fasciculus (AF), and their clinical correlates.MethodsUsing diffusion tensor imaging (DTI) tractography, integrity of the UF and AF was examined in 22 individuals (12 subjects with TLE and 10 age-matched healthy controls). DTI indices of these tracts were compared between the two subject groups and correlates examined with clinical variables that included age of seizure onset, duration of epilepsy, history of febrile seizure and antiepileptic medication exposure.ResultsIn subjects with TLE, the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of UF and AF ipsilateral to the side of seizure onset were abnormal when compared to healthy controls. Furthermore, lower UF FA correlated with earlier age of seizure onset.ConclusionTLE is associated with abnormal integrity of frontal-temporal white matter tracts, but only on the side of seizure onset. This suggests that frontal-temporal white matter tracts are vulnerable to recurrent seizures and/or the factors precipitating the epilepsy
Path Integral Monte Carlo Simulation of the Low-Density Hydrogen Plasma
Restricted path integral Monte Carlo simulations are used to calculate the
equilibrium properties of hydrogen in the density and temperature range of
and . We test the accuracy of the pair density matrix and
analyze the dependence on the system size, on the time step of the path
integral and on the type of nodal surface. We calculate the equation of state
and compare with other models for hydrogen valid in this regime. Further, we
characterize the state of hydrogen and describe the changes from a plasma to an
atomic and molecular liquid by analyzing the pair correlation functions and
estimating the number of atoms and molecules present.Comment: 12 pages, 21 figures, submitted for Phys. Rev.
Hydrogen-Helium Mixtures at High Pressure
The properties of hydrogen-helium mixtures at high pressure are crucial to
address important questions about the interior of Giant planets e.g. whether
Jupiter has a rocky core and did it emerge via core accretion? Using path
integral Monte Carlo simulations, we study the properties of these mixtures as
a function of temperature, density and composition. The equation of state is
calculated and compared to chemical models. We probe the accuracy of the ideal
mixing approximation commonly used in such models. Finally, we discuss the
structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum
Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004
High-resolution net and gross biological production during a Celtic Sea spring bloom
Shelf seas represent only 10% of the ocean area, but support up to 30% of all oceanic primary production. There are few measurements of shelf-sea biological production at high spatial and temporal resolution in such heterogeneous and physically dynamic systems. Here, we use dissolved oxygen-to-argon (O2/Ar) ratios and oxygen triple isotopes (16O, 17O, 18O) to estimate net and gross biological production in the Celtic Sea during spring 2015. O2/Ar ratios were measured continuously using a shipboard membrane inlet mass spectrometer (MIMS). Additional discrete water samples from CTD hydrocasts were used to measure O2/Ar depth profiles and the δ(17O) and δ(18O) values of dissolved O2. These high-resolution data were combined with wind-speed based gas exchange parameterisations to calculate biologically driven air-sea oxygen fluxes. After correction for disequilibrium terms and diapycnal diffusion, these fluxes yielded estimates of net community (N(O2/Ar)) and gross O2 production (G(17O)). N(O2/Ar) was spatially heterogeneous and showed predominantly autotrophic conditions, with an average of (33±41) mmol m-2 d-1. G(17O) showed high variability between 0 and 424 mmol m-2 d-1. The ratio of N(O2/Ar) to G(17O), ƒ(O2), was (0.18±0.03) corresponding to 0.34±0.06 in carbon equivalents. We also observed rapid temporal changes in N(O2/Ar), e.g. an increase of 80 mmol m-2 d-1 in less than 6 hours during the spring bloom, highlighting the importance of high-resolution biological production measurements. Such measurements will help reconcile the differences between satellite and in situ productivity observations, and improve our understanding of the biological carbon pump
Recommended from our members
Predicting functional gains in a stroke trial.
A number of therapies in development for patients with central nervous system injury aim to reduce disability by improving function of surviving brain elements rather than by salvaging tissue. The current study tested the hypothesis that, after adjusting for a number of clinical assessments, a measure of brain function at baseline would improve prediction of behavioral gains after treatment.Twenty-four patients with chronic stroke underwent baseline clinical and functional MRI assessments, received 6 weeks of rehabilitation therapy with or without investigational motor cortex stimulation, and then had repeat assessments. Thirteen baseline clinical/radiological measures were evaluated for ability to predict subsequent trial-related gains.Across all patients, bivariate analyses found that greater trial-related functional gains were predicted by (1) smaller infarct volume, (2) greater baseline clinical status, and (3) lower degree of activation in stroke-affected motor cortex on baseline functional MRI. When these 3 variables were further assessed using multivariate linear regression modeling, only lower motor cortex activation and greater clinical status at baseline remained significant predictors. Note that lower baseline motor cortex activation was also associated with larger increases in motor cortex activation after treatment.Lower motor cortex activity at baseline predicted greater behavioral gains after therapy, even after controlling for a number of clinical assessments. The boosts in cortical activity that paralleled behavioral gains suggest that in some patients, low baseline cortical activity represents underuse of surviving cortical resources. A measure of brain function might be important for optimal clinical decision-making in the context of a restorative intervention
Recommended from our members
An assessment of brain function predicts functional gains in a clinical stroke trial
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
- …
